【題目】有兩個一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a·c≠0,a≠c,下列四個結(jié)論:① 如果M有兩個相等的實數(shù)根,那么N也有兩個相等實數(shù)根;② 如果M與N有實數(shù)根,則M有一個根與N的一個根互為倒數(shù);③ 如果M與N有實數(shù)根,且有一根相同,那么這個根必是1;④ 如果M的兩根符號相同,那么N的兩根符號也相同;其中正確的是( )
A.①②③B.①②④C.②③④D.①③④
【答案】B
【解析】
①方程M:ax2+bx+c=0有兩個不等的實數(shù)根,則△=b2-4ac>0,判斷方程N:cx2+bx+a=0也一定有兩個不等的實數(shù)根,只要證明方程的判別式的值大于0即可;
② 設(shè)x1是方程M的一個根,得到ax12+bx1+c=0,于是得到c()2+b+a=0,推出是方程N的一個根;故正確;
③當(dāng)x=-1也是方程M和方程N有一個相同的根,故錯誤;
④根據(jù)方程M有兩根符號相同,得到兩根的積>0,于是得到a,c同號,由于對于方程N,a,c同號,推出>0,于是得到方程N的兩根符號也相同;故正確.
①∵方程M:ax2+bx+c=0有兩個不等的實數(shù)根,則△=b2-4ac>0,
∴對于方程N:cx2+bx+a=0,△=b2-4ac>0,即方程N有兩個不等的實數(shù)根;故正確;
②設(shè)x1是方程M的一個根,
∴ax12+bx1+c=0,
∴c()2+b+a=0,
故是方程N的一個根;故正確;
③當(dāng)x=-1時分別代入方程M和方程N得:a-b+c=0和c-b+a=0,故錯誤;
④∵方程M有兩根符號相同,
∴>0,
∴a,c同號,
∵對于方程N,
∵a,c同號,
∴>0,
∴方程N的兩根符號也相同;故正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌童裝網(wǎng)店平均每天可售出20件,每件盈利40元.為了迎接“雙十一”,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查,如果每件童裝降價1元,那么平均每天就可多售出2件.解決下列問題
(1)若設(shè)每件童裝降價元,那么平均每天可以多售出 件童裝.
(2)為了使百姓得到更多實惠,要想平均每天銷售這種童裝盈利1200元,則每件童裝應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上一點,E是AC邊上一點.且滿足AD=AB,∠ADE=∠C.
(1)求證:AB2=AEAC;
(2)若D為BC中點,AE=4,EC=6,且tanB=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象經(jīng)過點A(2,3)與點B(0,5)。
(1)求此一次函數(shù)的解析式。
(2)若P點為此一次函數(shù)圖象上一點,且△POB的面積為10.求點P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,對角線AC,BD交于點E,點O在線段AE上,⊙O過B,D兩點,若OC=5,OB=3,且cos∠BOE=.求證:CB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,點D為直線BC上的動點,過點D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當(dāng)點D在線段BC上時,如圖1所示,①∠EDC= °;
②探究線段DF與EC的數(shù)量關(guān)系,并證明;
(2)當(dāng)點D運動到CB延長線上時,請你畫出圖形,并證明此時DF與EC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,P是第一象限角平分線上的一點,且P點的橫坐標(biāo)為3.把一塊三角板的直角頂點固定在點P處,將此三角板繞點P旋轉(zhuǎn),在旋轉(zhuǎn)的過程中設(shè)一直角邊與x軸交于點E,另一直角邊與y軸交于點F,若△POE為等腰三角形,則點F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點和該拋物線與y軸的交點在一次函數(shù)y=kx+1(k≠0)的圖象上,它的對稱軸是x=1,有下列四個結(jié)論:①abc<0,②a<﹣,③a=﹣k,④當(dāng)0<x<1時,ax+b>k,其中正確結(jié)論的個數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com