【題目】如圖,在四邊形ABCD中,ADBCDEBC,垂足為點(diǎn)E,連接ACDE于點(diǎn)F,點(diǎn)GAF的中點(diǎn),∠ACD=2ACB.若DG=3,EC=1,則DE的長(zhǎng)為( )

A. B. C. D.

【答案】C

【解析】根據(jù)直角三角形斜邊上的中線的性質(zhì)可得DG=AG,根據(jù)等腰三角形的性質(zhì)可得∠GAD=GDA,根據(jù)三角形外角的性質(zhì)可得∠CGD=2GAD,再根據(jù)平行線的性質(zhì)和等量關(guān)系可得∠ACD=CGD,根據(jù)等腰三角形的性質(zhì)可得CD=DG,再根據(jù)勾股定理即可求解.

解:∵ADBC,DEBC,DEAD,CAD=ACB,ADE=BED=90°,

又∵點(diǎn)GAF的中點(diǎn),∴DG=AG,∴∠GAD=GDA,∴∠CGD=2CAD,

∵∠ACD=2ACB=2CAD,∴∠ACD=CGD,CD=DG=3,

RtCED中,DE=

故選C.

“點(diǎn)睛”綜合考查了勾股定理,等腰三角形的判定與性質(zhì)和直角三角形斜邊上的中線,解題的關(guān)鍵是證明CD=DG=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C

(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 ,位置關(guān)系是

(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;

(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某體育用品商店購(gòu)進(jìn)了一批運(yùn)動(dòng)服,每件售價(jià)120元,可獲利20%,這種衣服每件的進(jìn)價(jià)是元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)yx22xmx軸無(wú)交點(diǎn),則一次函數(shù)y=(m+1x+m1的圖象不經(jīng)過(guò)( 。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,P是BC邊上一動(dòng)點(diǎn)(不含B、C兩點(diǎn)),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的有 (寫出所有正確結(jié)論的序號(hào))

①△CMP∽△BPA;

②四邊形AMCB的面積最大值為10;

③當(dāng)P為BC中點(diǎn)時(shí),AE為線段NP的中垂線;

④線段AM的最小值為;

⑤當(dāng)△ABP≌△ADN時(shí),BP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式2x+5>4x﹣1的正整數(shù)解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC時(shí)

1)若CEBDE,①∠ECD=___________0;②求證:BD=2EC;

2)如圖,點(diǎn)P是射線BAA點(diǎn)右邊一動(dòng)點(diǎn),以CP為斜邊作等腰直角△CPF,其中∠F90°,點(diǎn)Q∠FPC∠PFC的角平分線的交點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),點(diǎn)Q是否一定在射線BD上?若在,請(qǐng)證明,若不在;請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將某種商品的售價(jià)從原來(lái)的每件40元經(jīng)兩次調(diào)價(jià)后調(diào)至每件32.4元。若該商店兩次調(diào)價(jià)的降價(jià)率相同,求這個(gè)降價(jià)率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(﹣2x23的結(jié)果是(
A.﹣2x5
B.﹣8x6
C.﹣2x6
D.﹣8x5

查看答案和解析>>

同步練習(xí)冊(cè)答案