【題目】如圖,四邊形ABDC內(nèi)接于半圓O,AB為直徑,AD平分∠CAB,AB﹣AC=4,AD=3,作DE⊥AB于點E,則BE的長為_____,AC的長為_____.
【答案】2, 5.
【解析】
作DF⊥AC交AC的延長線于F,證明Rt△DFC≌Rt△DEB(HL),推出CF=BE,證明Rt△ADF≌Rt△ADE(HL),推出AF=AE,由AB-AC=AE+EB-(AF-CF)=2BE=4,推出BE=2,由△ADE∽△ABD,推出,可得AD2=AEAB,設(shè)AE=x,由此建立方程即可解決.
如圖,作DF⊥AC交AC的延長線于F.
∵AD平分∠CAB,DF⊥AC,DE⊥AB,
∴DE=DF,∠DAC=∠DAB
∴,
∴CD=DB,
∵∠F=∠DEB=90°,
∴Rt△DFC≌Rt△DEB(HL),
∴CF=BE,
∵∠F=∠AED=90°,AD=AD.DF=DE,
∴Rt△ADF≌Rt△ADE(HL),
∴AF=AE,
∵AB﹣AC=AE+EB﹣(AF﹣CF)=2BE=4,
∴BE=2,
∵AB是直徑,
∴∠ADB=90°,
∵∠DAE=∠BAD,∠AED=∠ADB=90°,
∴△ADE∽△ABD,
∴,
∴AD2=AEAB,設(shè)AE=x,
則有:63=x(x+2),
解得x=7或﹣9(舍棄),
∴AE=7,
∴AB=AE+BE=9,
∵AB﹣AC=4,
∴AC=5,
故答案為:2,5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,P是BC邊上與B、C不重合的任意一點,DQ⊥AP于點Q
(1)判斷△DAQ與△APB是否相似,并說明理由.
(2)當(dāng)點P在BC上移動時,線段DQ也隨之變化,設(shè)PA=x,DQ=y,求y與x間的函數(shù)關(guān)系式,并求出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場擬建三間矩形牛飼養(yǎng)室,飼養(yǎng)室的一面全部靠現(xiàn)有墻(墻長為40m),飼養(yǎng)室之間用一道用建筑材料做的墻隔開(如圖).已知計劃中的建筑材料可建圍墻的總長為60m,設(shè)三間飼養(yǎng)室合計長x(m),總占地面積為y(m2).
(1)求y關(guān)于x的函數(shù)表達式和自變量的取值范圍.
(2)x為何值時,三間飼養(yǎng)室占地總面積最大?最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時,AD的長為 ;
②當(dāng)AC=3,BC=4時,AD的長為 ;
(2)當(dāng)點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年國慶期間解放碑、洪崖洞、朝天門、來福士、長嘉匯等景點人員密集;穿樓而過的輕軌、洪崖洞、燈光秀……吸引著海量游客前來重慶打卡.位于洪崖洞的重慶知名火鍋小天鵝火鍋在節(jié)日期間每天也人滿為患,其中鴛鴦火鍋和紅湯火鍋最受游客青睞.在中秋節(jié)期間,前來就餐選擇鴛鴦火鍋和紅湯火鍋的游客共有2000名,鴛鴦火鍋和紅湯火鍋的人均消費分別為180元和120元.
(1)中秋節(jié)期間,若選擇紅湯火鍋的人數(shù)不超過鴛鴦火鍋人數(shù)的1.5倍.求至少有多少人選擇鴛鴦火鍋?
(2)“國慶”節(jié)期間,前來就餐的游客人數(shù)有所下降,與(1)問中選擇鴛鴦火鍋的人數(shù)最少時相比,選擇兩種火鍋的人數(shù)均下降了a%;人均消費與中秋節(jié)期間相比均有所上升,其中鴛鴦火鍋的人均消費上漲了a%,紅湯火鍋的人均消費上漲了a%,最終“國慶”節(jié)期間兩種火鍋的總銷售額與(1)問中選擇鴛鴦火鍋的人數(shù)最少時的兩種火鍋的總銷售額持平,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com