【題目】已知:如圖,菱形ABCD中,過AD的中點(diǎn)EAC的垂線EF,交AB于點(diǎn)M,交CB的延長線于點(diǎn)F.如果FB的長是,∠AEM30°.求菱形ABCD的周長和面積.

【答案】84.

【解析】

首先連接BD,易證得四邊形EFBD為平行四邊形,即可求得AD的長,繼而求得菱形ABCD的周長,求出對(duì)角線的長度,利用菱形的面積=對(duì)角線乘積的一半求出面積.

解:連接BD.

∵在菱形ABCD中,

ADBC,ACBD.

又∵EFAC,

BDEF.

∴四邊形EFBD為平行四邊形.

FBED.

∵∠AEM=30°

BD2,AC2,

EAD的中點(diǎn).

AD=2ED=2.

∴菱形ABCD的周長為4×28,

菱形ABCD的面積為×2×2=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水池放水,先用一臺(tái)抽水機(jī)工作一段時(shí)間后停止,然后再調(diào)來一臺(tái)同型號(hào)抽水機(jī),兩臺(tái)抽水機(jī)同時(shí)工作直到抽干.設(shè)從開始工作的時(shí)間為,剩下的水量為.下面能反映之間的關(guān)系的大致圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】霧霾天氣已經(jīng)成為人們普遍關(guān)注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康.在2017年2月周末休息期間,某校九年級(jí)一班綜合實(shí)踐小組的同學(xué)以“霧霾天氣的主要成因”為主題,隨機(jī)調(diào)查了太原市部分市民的觀點(diǎn),并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計(jì)表及統(tǒng)計(jì)圖,觀察并回答下列問題:

類別

霧霾天氣的主要成因

百分比

A

工業(yè)污染

45%

B

汽車尾氣排放

m

C

城中村燃煤問題

15%

D

其他(綠化不足等)

n


(1)請(qǐng)你求出本次被調(diào)查市民的人數(shù)及m,n的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該市有800萬人口,請(qǐng)你估計(jì)持有B,C兩類看法的市民共有多少人?
(3)小明同學(xué)在四個(gè)質(zhì)地、大小、形狀都完全相同的小球上標(biāo)記A,B,C,D代表四個(gè)霧霾天氣的主要成因中,放在一個(gè)不透明的盒子中,他先隨機(jī)抽取一個(gè)小球,放回去,再隨機(jī)抽取一個(gè)小球,請(qǐng)用畫樹狀圖或列表的方法,求出小穎同學(xué)剛好抽到B和D的概率.(用A,B,C,D表示各項(xiàng)目)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點(diǎn),連結(jié)BE并延長交CD的延長線于點(diǎn)F.

(1)請(qǐng)連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板,

1)按如圖①所示方式放置,點(diǎn)三點(diǎn)共線,,求的度數(shù);

2)在(1)的條件下,若分別是內(nèi)部的一條射線,且均以點(diǎn)為中心,分別從位置出發(fā),以/秒、/秒的旋轉(zhuǎn)速度沿逆時(shí)針方向旋轉(zhuǎn),當(dāng)重疊時(shí),所有旋轉(zhuǎn)均停止,試說明:當(dāng)旋轉(zhuǎn)秒后,

3)若三角板 (不含)是一塊非標(biāo)準(zhǔn)三角板,按如圖②所示方式放置,使,作射線,若,求的度數(shù)之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計(jì)的“作邊上的高線”的尺規(guī)作圖過程.

已知:.

求作:邊上的高線.

作法:如圖,

①以點(diǎn)為圓心,的長為半徑作弧,以點(diǎn)為圓心,的長為半徑作弧,兩弧在下方交于點(diǎn);

②連接于點(diǎn).

所以線段邊上的高線.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵    ,

∴點(diǎn),分別在線段的垂直平分線上(  )(填推理的依據(jù)).

垂直平分線段.

∴線段邊上的高線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)分別在邊上,相交于點(diǎn),如果已知,那么還不能判定,補(bǔ)充下列一個(gè)條件后,仍無法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用棋子按下面的規(guī)律擺圖形,則擺第2018個(gè)圖形需要圍棋子( 。┟叮

A. 6053B. 6054C. 6056D. 6060

查看答案和解析>>

同步練習(xí)冊答案