【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點A(1,2)和B(2,n),

(1)以原點O為位似中心畫出△A1B1O,使=;

(2)y軸上是否存在點P,使得PA+PB的值最。咳舸嬖,求出P的坐標(biāo);若不存在,請說明理由.

【答案】(1)作圖見解析;(2)存在,P(0,).

【解析】

(1)有兩種情形,分別畫出圖象即可;
(2)存在.如圖作點A關(guān)于y軸的對稱點A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最。蟪鲋本BA′的解析式即可解決問題.

(1)△A1B1O的圖象如圖所示.

(2)存在.如圖作點A關(guān)于y軸的對稱點A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最。

∵點A(1,2)在反比例函數(shù)y=上,

∴k=2,

∴B(2,1),

∵A′(﹣1,2),

設(shè)最小BA′的解析式為y=kx+b,則有 ,

解得 ,

∴直線BA′的解析式為y=﹣x+,

∴P(0,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線、相交于點,,半徑為的圓心在直線上,且與點的距離為.如果的速度,沿由的方向移動,那么________秒種后與直線相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,平分,,與相交于點邊的中點,連接相交于點,下列結(jié)論:①;②;③是等腰三角形;④.正確的有( )個.

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.

(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)設(shè)計費能達(dá)到24000元嗎?為什么?

(3)當(dāng)x是多少米時,設(shè)計費最多?最多是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一個長方形紙片沿對角線折疊.點落在點處,于點,已知,則折疊后重合部分的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個交點A、B,與x軸的另一個交點為C,頂點為D.

(1)求拋物線的解析式;

(2)畫出拋物線的圖象;

(3)x軸上是否存在點N使△ADN為直角三角形?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學(xué)校接小紅回家,小紅爸爸出發(fā)的同時,小紅以96m/min的速度從學(xué)校沿同一條道路步行回家,小紅爸爸趕到學(xué)校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設(shè)他們出發(fā)的時間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1t之間的函數(shù)關(guān)系,線段EF表示小紅與家之間的距離S2t之間的函數(shù)關(guān)系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時間是(

A.12minB.16minC.18minD.20min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yax22ax1(a是常數(shù),a≠0),下列結(jié)論正確的是( )

A. 當(dāng)a1,函數(shù)圖象過點(1,1)

B. 當(dāng)a=-2,函數(shù)圖象與x軸沒有交點

C. a>0,則當(dāng)x≥1,yx的增大而減小

D. a<0,則當(dāng)x≤1,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

查看答案和解析>>

同步練習(xí)冊答案