【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時,求AP的長;
(2)當(dāng)運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
【答案】
(1)解:∵△ABC是邊長為6的等邊三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QPC=90°,
設(shè)AP=x,則PC=6﹣x,QB=x,
∴QC=QB+BC=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC= QC,即6﹣x= (6+x),解得x=2,
∴AP=2
(2)解:當(dāng)點P、Q同時運動且速度相同時,線段DE的長度不會改變.理由如下:
作QF⊥AB,交直線AB于點F,連接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵點P、Q速度相同,
∴AP=BQ,
∵△ABC是等邊三角形,
∴∠A=∠ABC=∠FBQ=60°,
在△APE和△BQF中,
∵∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
,
∴△APE≌△BQF(AAS),
∴AE=BF,PE=QF且PE∥QF,
∴四邊形PEQF是平行四邊形,
∴DE= EF,
∵EB+AE=BE+BF=AB,
∴DE= AB,
又∵等邊△ABC的邊長為6,
∴DE=3,
∴點P、Q同時運動且速度相同時,線段DE的長度不會改變.
【解析】(1)由△ABC是邊長為6的等邊三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,設(shè)AP=x,則PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x= (6+x),求出x的值即可;(2)作QF⊥AB,交直線AB于點F,連接QE,PF,由點P、Q做勻速運動且速度相同,可知AP=BQ,再根據(jù)全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四邊形PEQF是平行四邊形,進而可得出EB+AE=BE+BF=AB,DE= AB,由等邊△ABC的邊長為6可得出DE=3,故當(dāng)點P、Q運動時,線段DE的長度不會改變.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=20 cm,直線AB上有一點C,且BC=6 cm,點M是線段AB的中點,點N是線段BC的中點,則MN=____________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車經(jīng)銷商購進兩種型號的低排量汽車,其中型汽車的進貨單價比型汽車的進貨單價多2萬元,經(jīng)銷商花50萬元購進型汽車的數(shù)量與花40萬元購進型汽車的數(shù)量相等.銷售中發(fā)現(xiàn)型汽車的每周銷量(臺)與售價(萬元/臺)滿足函數(shù)關(guān)系式, 型汽車的每周銷量(臺)與售價(萬元/臺)滿足函數(shù)關(guān)系式.
(1)求兩種型號的汽車的進貨單價;
(2)已知型汽車的售價比型汽車的售價高2萬元/臺,設(shè)型汽車售價為萬元/臺.每周銷售這兩種車的總利潤為萬元,求與的函數(shù)關(guān)系式, 兩種型號的汽車售價各為多少時,每周銷售這兩種車的總利潤最大?最大總利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲煤場有煤518噸,乙煤場有煤106噸,為了使甲煤場存煤是乙煤場的2倍,需要從甲煤場運煤到乙煤場,設(shè)從甲煤場運煤x噸到乙煤場,則可列方程為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A,B,點B的橫坐標是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.
(1)求k的值;
(2)設(shè)直線PA,PB與x軸分別交于點M,N,求證:△PMN是等腰三角形;
(3)設(shè)點Q是反比例函數(shù)圖象上位于P,B之間的動點(與點P,B不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com