如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(-3,0)、B(-1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx-4k (k≠0)的圖象過(guò)點(diǎn)P交x軸于點(diǎn)Q.
(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(-4,m)時(shí),求證:∠OPC=∠AQC;
(3)點(diǎn)M、N分別在線段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M、N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①連接AN,當(dāng)△AMN的面積最大時(shí),求t的值;
②直線PQ能否垂直平分線段MN?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明你的理由.
(1)y=x2+4x+3;
(2)見(jiàn)解析;
(3)①②能,點(diǎn)P的坐標(biāo)或
【解析】(1)∵二次函數(shù)的圖象過(guò)點(diǎn)A(-3,0)、B(-1,0),∴設(shè)該函數(shù)的函數(shù)關(guān)系式為y=a(x+3)(x+1) ,
又∵函數(shù)的圖象過(guò)點(diǎn)C(0,3),∴3a=3, a=1 ,
∴二次函數(shù)的函數(shù)關(guān)系式為y=(x+3)(x+1),即y=x2+4x+3 ;
(2)∵點(diǎn)P的坐標(biāo)為(-4,m),∴(-4)2+4×(-4)+3=m,得m=3,則點(diǎn)P的坐標(biāo)為(-4,3),又點(diǎn)C的坐標(biāo)為(0,3),∴PC∥OQ , PC=4 ,∵Q是一次函數(shù)y=kx-4k的圖象與x軸的交點(diǎn),∴當(dāng)y=0時(shí),kx-4k=0,即k(x-4)=0
∵k≠0,∴x=4,∴點(diǎn)Q的坐標(biāo)為(4,0) ,∵PC=OQ=4,∴四邊形POQC是平行四邊形,∴∠OPC=∠AQC ;
(3)①連結(jié)AN,則有AM=3t,CN=t∵點(diǎn)C的坐標(biāo)為C(0,3), ∴OC=3,由(2)得OQ=4, ∴CQ=5,∴QN=5-t ,過(guò)點(diǎn)N作NG⊥AQ于點(diǎn)G,
則△QGN∽△QOC,∴,,∴NG= ,∴△AMN的面積為S與時(shí)間t的函數(shù)關(guān)系式為即,
∵點(diǎn)M從點(diǎn)A運(yùn)動(dòng)到點(diǎn)Q需秒,點(diǎn)N從點(diǎn)C運(yùn)動(dòng)到點(diǎn)Q需5秒,∴點(diǎn)M先到達(dá)點(diǎn)Q,即,∵當(dāng)時(shí),S隨著t的增大而增大,∴當(dāng)△AMN的面積最大時(shí), ,
②直線PQ能垂直平分線段MN ,
當(dāng)NQ=MQ,且PQ與MN的交點(diǎn)H是MN的中點(diǎn)時(shí),PQ垂直平分線段MN,
∵QN=5-t,MQ=7-3t,則5-t=7-3t, ∴t=1
即t=1,且PQ與MN的交點(diǎn)H是MN的中點(diǎn)時(shí),直線PQ垂直平分線段MN,
此時(shí)NQ=MQ=4,點(diǎn)M的坐標(biāo)為(0,0)
由①可得,,,
∴, ∴點(diǎn)N的坐標(biāo)為(,),∴線段MN的中點(diǎn)H的坐標(biāo)為(,)
∴,
∴線段MN的垂直平分線段PQ的函數(shù)關(guān)系式為
∵點(diǎn)P是直線PQ與拋物線y=x2+4x+3的公共點(diǎn),∴
解得 ,,
∴點(diǎn)P的坐標(biāo)為或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AD為等邊△ABC邊BC上的高,AB=4,AE=1,P為高AD上任意一點(diǎn),則EP+BP的最小值為( )。
A、 B、 C、 D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,如圖2,∠BAC=45°,求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖6,矩形ABCD的頂點(diǎn)A在第一象限,AB∥x軸,AD∥y軸,且對(duì)角線的交點(diǎn)與原點(diǎn)O重合.在邊AB從小于AD到大于AD的變化過(guò)程中,若矩形ABCD的周長(zhǎng)始終保持不變,則經(jīng)過(guò)動(dòng)點(diǎn)A的反比例函數(shù)y=(k≠0)中k的值的變化情況是( )
A.一直增大 B.一直減小
C.先增大后減小 D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:如圖,正方形ABCD中,P是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),PECD于E, PFBC于F,連接EF,求證:AP=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形ABCD的對(duì)角線相交于O,點(diǎn)F在AD上,AD=3AF, △AOF的外接圓交AB于E,則的值為:( )
A. B.3 C. D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com