【題目】如圖,,.

1)點(diǎn)軸的距離為:______;

2的三邊長(zhǎng)為:____________,______

3)當(dāng)點(diǎn)軸上,且的面積為6時(shí),點(diǎn)的坐標(biāo)為:______.

【答案】13;(26,;(3,

【解析】

1)點(diǎn)C的縱坐標(biāo)的絕對(duì)值就是點(diǎn)Cx軸的距離解答;

2)利用A,CB的坐標(biāo)分別得出各邊長(zhǎng)即可;

3)設(shè)點(diǎn)P的坐標(biāo)為(0y),根據(jù)△ABP的面積為6,A2,3)、B4,3),所以×6×|x3|6,即|x3|2,所以x5x1,即可解答.

1)∵C1,3),

|3|3,

∴點(diǎn)軸的距離為3;

2)∵A2,3)、B43)、C1,3),

AB42)=6,

AC,BC;

3)(3)設(shè)點(diǎn)P的坐標(biāo)為(0,y),

∵△ABP的面積為6A2,3)、B4,3),

。。、×6×|y3|6,

|y3|2,

y1y5,

P點(diǎn)的坐標(biāo)為(0,1)或(0,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,且關(guān)于的一元二次方程沒(méi)有實(shí)數(shù)根,有下列結(jié)論:其中,正確的是結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)延長(zhǎng)線上一點(diǎn),于點(diǎn),半徑的倍.

的半徑

如圖,弦,動(dòng)點(diǎn)出發(fā)沿直徑運(yùn)動(dòng)的過(guò)程中,圖中陰影部分的面積是否發(fā)生變化,若發(fā)生變化,請(qǐng)你說(shuō)明理由;若不發(fā)生變化,請(qǐng)你求出陰影部分的面積;

如圖,動(dòng)點(diǎn)出發(fā),在上按逆時(shí)針?lè)较蛳?/span>運(yùn)動(dòng).連接,過(guò)的垂線,與的延長(zhǎng)線交于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),取到最大值?求此時(shí)動(dòng)點(diǎn)所經(jīng)過(guò)的弧長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.乙兩種商品原來(lái)的單價(jià)和為100元,因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來(lái)的單價(jià)和提高了20%.若設(shè)甲.乙兩種商品原來(lái)的單價(jià)分別為x.y元,則可列方程組為_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CO上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DCAB的延長(zhǎng)線相交于點(diǎn)P,CE平分ACB,交AB于點(diǎn)E

1)求證:AC平分DAB;

2)求證:PCE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,, ,,將沿折疊,使點(diǎn)落在直角邊上的點(diǎn)處,設(shè)邊分別交于點(diǎn),如果折疊后均為等腰三角形,那么__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為20cm,∠ABC120°.動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),其中P4cm/s的速度,沿ABC的路線向點(diǎn)C運(yùn)動(dòng);Q2cm/s的速度,沿AC的路線向點(diǎn)C運(yùn)動(dòng).當(dāng)P、Q到達(dá)終點(diǎn)C時(shí),整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)在點(diǎn)P、Q運(yùn)動(dòng)過(guò)程中,請(qǐng)判斷PQ與對(duì)角線AC的位置關(guān)系,并說(shuō)明理由;

2)若點(diǎn)Q關(guān)于菱形ABCD的對(duì)角線交點(diǎn)O的對(duì)稱(chēng)點(diǎn)為M,過(guò)點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N

①當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?

②當(dāng)點(diǎn)P、MN不在一直線上時(shí),是否存在這樣的t,使得PMN是以PN為一直角邊的直角三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BPAC于點(diǎn)O,EAC上一點(diǎn),且AE=OC

1)求證:AP=AO

2)求證:PE⊥AO;

3)當(dāng)AE=AC,AB=10時(shí),求線段BO的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC為⊙O的直徑,A為⊙O上的點(diǎn),以BC、AB為邊作ABCD,OAD于點(diǎn)E,連結(jié)BE,點(diǎn)P為過(guò)點(diǎn)B的⊙O的切線上一點(diǎn),連結(jié)PE,且滿足∠PEA=ABE.

(1)求證:PB=PE;

(2)若sinP=, 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案