【題目】如圖,在△ABC中,點D、E分別是邊BC、AC的中點,過點A作AF∥BC交DE的延長線于F點,連接AD、CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形ADCF是正方形?請說明理由.
【答案】(1)證明見解析;(2)等腰直角三角形.
【解析】試題分析:
(1)先證四邊形ABDF是平行四邊形,再證結論;
(2)由四邊形ADCF是正方形來證明△ABC是等腰直角三角形.
試題解析:
(1)證明:∵點D、E分別是邊BC、AC的中點,∴DE∥AB,
∵AF∥BC,∴四邊形ABDF是平行四邊形,∴AF=BD,則AF=DC=AD,
∵AF∥BC,∴四邊形ADCF是平行四邊形;
(2)當△ABC是等腰直角三角形時,四邊形ADCF是正方形,
理由:∵四邊形ADCF是正方形,∴∠ADC=90°,AC=DF,AF=DC.
∵點D,E分別是邊BC,AC的中點,AB=2DE,∴AB=DF,所以AB=AC.
∴四邊形ABDF是平行四邊形,∴AF=BD,∴BD=CD=AD,
∴∠BAC=90°,
∴△ABC是等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)調查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結果精確到1m).
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A按逆時針方向旋轉120°得到△AB'C'(點B的對應點是點B',點C的對應點是點C'),連接BB',若AC'∥BB',則∠C'AB'的度數(shù)為( )
A.20°B.30°C.40°D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點,DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自學下面材料后,解答問題.
分母中含有未知數(shù)的不等式叫分式不等式.如:; <0等.那么如何求出它們的解集呢?
根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:
(1)若a>0,b>0,則>0;若a<0,b<0,則>0;
(2)若a>0,b<0,則<0;若a<0,b>0,則<0.
反之:(1)若>0,則或
(2)若<0,則 或 .
根據(jù)上述規(guī)律,求不等式>0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調查的學生總人數(shù);
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E在直線BC上,連接AE.將△ABE沿AE所在直線折疊,點B的對應點是點B′,連接AB′并延長交直線DC于點F.
(1)當點F與點C重合時如圖1,證明:DF+BE=AF;
(2)當點F在DC的延長線上時如圖2,當點F在CD的延長線上時如圖3,線段DF、BE、AF有怎樣的數(shù)量關系?請直接寫出你的猜想,并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家,他60歲時完成的《直指算法綜宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾丁,意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,則小和尚有__________人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com