【題目】如圖1為某立交橋示意圖(道路寬度忽略不計),AFGJ為高架,以O為圓心的圓盤BCDE位于高架下方,其中AB,AF,CH,DIEJ,GJ為直行道,且ABCHDIEJ,AFGJ,彎道FG是以點O為圓心的圓上的一段。⒔粯虻纳舷赂叨炔詈雎圆挥嫞,點B,C,D,E是圓盤O的四等分點.某日凌晨,有甲、乙、丙、丁四車均以10m/s的速度由A口駛入立交橋,并從出口駛出,若各車到圓心O的距離ym)與從A口進入立交后的時間xs)的對應關系如圖2所示,則下列說法錯誤的是( 。

A.甲車在立交橋上共行駛10s

B.I口出立交的車比從H口出立交的車多行駛30m

C.丙、丁兩車均從J口出立交

D.J口出立交的兩輛車在立交橋行駛的路程相差60m

【答案】B

【解析】

根據(jù)題意,結合圖像即可求解.

解:由圖象可得,

甲車在立交橋上共行駛7+310s,故選項A正確,

I口出立交的車比從H口出立交的車多行駛:10×73)=40m,故選項B錯誤,

甲從H口出立交、乙從I口出立交,則丙、丁兩車均從J口出立交,故選項C正確,

J口出立交的兩輛車為丙、丁,而丙的路程是:(3×2+4×3×10180m,丁的路程是:(17+7×10240m

∴從J口出立交的兩輛車在立交橋行駛的路程相差60m,故選項D正確;

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】從淄博汽車站到銀泰城有甲,乙,丙三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從淄博汽車站到銀泰城的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:

線路/公交車用時的頻數(shù)/公交車用時

30t35

35t40

40t45

45t50

合計

59

151

166

124

500

50

50

122

278

500

45

265

167

23

500

早高峰期間,乘坐線路上的公交車,從淄博汽車站到銀泰城“用時不超過45分鐘”的可能性最大.(  )

A.B.C.D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海上有A、B、C三座小島,小島B在島A的正北方向,距離為121海里,小島C分別位于島B的南偏東53°方向,位于島A的北偏東27°方向,求小島B和小島C之間的距離.(參考數(shù)據(jù):sin27°≈cos27°≈,tan27°≈,sin53°≈cos53°≈,tan53°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)尺規(guī)作圖:如圖,、是平面上兩個定點,在平面上找一點,使構成等腰直角三角形,且為直角頂點.(畫出一個點即可)

2)在(1)的條件下,若,,則點的坐標是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,對于任意兩點Px1,y1)與P2x2,y2)的最佳距離,給出如下定義:

|x1x2|≥|y1y2|,則點P1與點P2最佳距離|x1x2|

|x1x2||y1y2|,則點P1與點P2最佳距離|y1y2|

例如:點P11,2),點P23,5),因為|13||25|,所以點P1與點P2最佳距離|25|3,也就是圖1中線段P1Q與線段P2Q長度的較大值(過點P1平行于x軸的直線與過點P2垂直于x軸的直線交于點Q).

1)已知點A(﹣0),By軸上的一個動點.

①若點A與點B最佳距離3,寫出滿足條件的點B的坐標;

②直接寫出點A與點B最佳距離的最小值;

2)如圖2,已知點C是直線yx+3上的一個動點,點D的坐標是(0,1),求點C與點D最佳距離的最小值及相應的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的一邊AB為直徑作⊙O,⊙OBC邊的交點恰好為BC的中點D,過點D⊙O的切線交AC于點E

1)求證:DE⊥AC;

2)若AB=3DE,求tan∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB90°AC4cm,BC3cm如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設運動時間為ts0t4)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQPC,當四邊形PQPC為菱形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A11),過A作線段ABy軸(BA下方),以AB為邊向右作正方形ABCD.設點B的縱坐標為m,二次函數(shù)yax24ax的圖象的頂點為E

1AB   .(用含m的代數(shù)式表示);

2)當點A恰好在二次函數(shù)yax24ax的圖象上時,求二次函數(shù)yax24ax的關系式.

3)當點E恰為線段BC的中點時,求經(jīng)過點D的反比例函數(shù)的關系式;

4)若am+1,當二次函數(shù)yax24ax的圖象恰與正方形ABCD有三個交點且二次函數(shù)頂點E不位于直線BC下方時,直接寫出m的值.

查看答案和解析>>

同步練習冊答案