【題目】如圖,已知拋物線經(jīng)過兩點(diǎn)A(﹣3,0),B(0,3),且其對(duì)稱軸為直線x=﹣1.
(1)求此拋物線的解析式;
(2)若點(diǎn)P是拋物線上點(diǎn)A與點(diǎn)B之間的動(dòng)點(diǎn)(不包括點(diǎn)A,點(diǎn)B),求△PAB的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x2﹣2x+3;(2)△PAB的面積的最大值為,此時(shí)點(diǎn)P的坐標(biāo)(,).
【解析】
(1)因?yàn)閷?duì)稱軸是直線x=-1,所以得到點(diǎn)A(-3,0)的對(duì)稱點(diǎn)是(1,0),因此利用交點(diǎn)式y=a(x-x1)(x-x2),求出解析式.
(2)根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得最大值,根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案.
(1)∵拋物線對(duì)稱軸是直線x=﹣1且經(jīng)過點(diǎn)A(﹣3,0)
由拋物線的對(duì)稱性可知:拋物線還經(jīng)過點(diǎn)(1,0)
設(shè)拋物線的解析式為y=a(x﹣x1)(x﹣x2)(a≠0)
即:y=a(x﹣1)(x+3)
把B(0,3)代入得:3=﹣3a
∴a=﹣1
∴拋物線的解析式為:y=﹣x2﹣2x+3.
(2)設(shè)直線AB的解析式為y=kx+b,
∵A(﹣3,0),B(0,3),
∴,
∴直線AB為y=x+3,
作PQ⊥x軸于Q,交直線AB于M,
設(shè)P(x,﹣x2﹣2x+3),則M(x,x+3),
∴PM=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,
∴,
當(dāng)時(shí),,,
∴△PAB的面積的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是等對(duì)角四邊形,∠A≠∠C,∠A=60°,∠B=75°,則:∠C= °,∠D= °;
(2)已知,如圖2,在平面直角坐標(biāo)系xOy中,四邊形ABCD是等對(duì)角四邊形,其中A(﹣2,0),C(2,0),B(-1,),點(diǎn)D在y軸上.
①若拋物線y=ax2+bx+c過點(diǎn)A,C,D,求二次函數(shù)的解析式;
②若拋物線y=ax2+bx+c(a<0)過點(diǎn)A,C,點(diǎn)P在拋物線上,當(dāng)滿足∠APC=∠ADC的P點(diǎn)至少有3個(gè)時(shí),總有不等式2n﹣+成立,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=6,若點(diǎn)E,F分別在AB,CD上,且BE=2AE,DF=2FC,G,H分別是AC的三等分點(diǎn),則四邊形EHFG的面積為( )
A. 1B. C. 2D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好數(shù)學(xué)的甲、乙兩個(gè)同學(xué)做了一個(gè)數(shù)字游戲:拿出三張正面寫有數(shù)字﹣1,0,1且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機(jī)抽取一張,將所得數(shù)字作為p的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機(jī)抽取一張,將所得數(shù)字作為q值,兩次結(jié)果記為.
(1)請你幫他們用樹狀圖或列表法表示所有可能出現(xiàn)的結(jié)果;
(2)求滿足關(guān)于x的方程沒有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】箱子里有4瓶牛奶,其中有一瓶是過期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.
(1)請用樹狀圖或列表法把上述所有等可能的結(jié)果表示出來;
(2)求抽出的2瓶牛奶中恰好抽到過期牛奶的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(-2,-4),B(0,-4),C(1,-1).
(1)畫出△ABC關(guān)于點(diǎn)O的中心對(duì)稱圖形△A1B1C1.
(2)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B2C2,直接寫出點(diǎn)C2的坐標(biāo)為 .
(3)若△ABC內(nèi)一點(diǎn)P(m,n)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)為Q,則Q的坐標(biāo)為 .(用含m,n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=20cm,BC=15cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4cm的速度沿AB方向運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng).過點(diǎn)P作AB的垂線交斜邊AC于點(diǎn)E,將△APE繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到△DPF.設(shè)點(diǎn)P在邊AB上運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),求t的值;
(2)當(dāng)△DPF與△ABC重疊部分的圖形為四邊形時(shí),設(shè)此四邊形的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點(diǎn)M是DF的中點(diǎn),當(dāng)點(diǎn)M恰好在Rt△ABC的內(nèi)角角平分線上時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A(﹣4,0),B(﹣1,3),以OA、OB為邊作OACB,經(jīng)過A點(diǎn)的一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于點(diǎn)C.
(1)求一次函數(shù)y=k1x+b的解析式;
(2)請根據(jù)圖象直接寫出在第二象限內(nèi),當(dāng)k1x+b>時(shí),自變量x的取值范圍;
(3)將OACB向上平移幾個(gè)單位長度,使點(diǎn)A落在反比例函數(shù)的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com