【題目】如圖,已知AD為△ABC的高線,AD=BC,以AB為底邊作等腰Rt△ABE,連接ED,EC,延長CE交AD于F點,下列結(jié)論:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正確的有( 。
A. ①③ B. ①②④ C. ①②③④ D. ①③④
【答案】C
【解析】
①易證∠CBE=∠DAE,即可求證:△ADE≌△BCE;
②根據(jù)①結(jié)論可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解題;
③證明△AEF≌△BED即可;
④易證△FDC是等腰直角三角形,則CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.
①∵AD為△ABC的高線,∴∠CBE+∠ABE+∠BAD=90°.
∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE.在△DAE和△CBE中,∵,∴△ADE≌△BCE(SAS);故①正確;
②∵△ADE≌△BCE,∴∠EDA=∠ECB.
∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正確;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.
∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.
在△AEF和△BED中,∵,∴△AEF≌△BED(AAS),∴BD=AF;故③正確;
④∵AD=BC,BD=AF,∴CD=DF.
∵AD⊥BC,∴△FDC是等腰直角三角形.
∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.
∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,平移三角形ABC,使點A平移到點,畫出平移后的三角形;
(2)在(1)的條件下,指出點A,B,C 的對應(yīng)點,并指出AB,BC,AC的對應(yīng)線段和∠A,∠B, ∠C的對應(yīng)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,且AE=CD,BE與AD相交于點P,BQ上AD于點Q.
(1)求證:AD=BE;
(2)求∠PBQ的度數(shù);
(3)若PQ=3,PE=1,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為( )
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①有一條直角邊和斜邊的高對應(yīng)相等的兩個直角三角形全等;
②有兩邊和其中一邊上高對應(yīng)相等的兩個三角形全等;
③有兩邊和第三邊上的中線對應(yīng)相等的兩個三角形全等;
④有兩邊和其中一邊上的中線對應(yīng)相等的兩個三角形全等.
其中正確的命題有( )A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據(jù)所給的直角坐標(biāo)系(O是坐標(biāo)原點),解答下列問題:
(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標(biāo);
(2)求出在整個平移過程中,△ABC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑作弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE.若AB=6,BC=8,則△ABE的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)①畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1 , 并直接寫出C1點坐標(biāo);
②以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2 , 并直接寫出C2點坐標(biāo);
(2)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(1)②的變化后點D的對應(yīng)點D2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com