精英家教網 > 初中數學 > 題目詳情

【題目】黔東南州某中學為了解本校學生平均每天的課外學習實踐情況,隨機抽取部分學生進行問卷調查,并將調查結果分為A,B,C,D四個等級,設學生時間為t(小時),A:t1,B:1t1.5,C:1.5t2,D:t2,根據調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據圖中信息解答下列問題:

(1)本次抽樣調查共抽取了多少名學生?并將條形統(tǒng)計圖補充完整;

(2)本次抽樣調查中,學習時間的中位數落在哪個等級內?

(3)表示B等級的扇形圓心角α的度數是多少?

(4)在此次問卷調查中,甲班有2人平均每天課外學習時間超過2小時,乙班有3人平均每天課外學習時間超過2小時,若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級的概率.

【答案】(1)200;(2)C;(3)54°;(4)

【解析】

試題分析:(1)根據B類的人數和所占的百分比即可求出總數;求出C的人數從而補全統(tǒng)計圖;

(2)根據中位數定義:將一組數據按照從小到大(或從大到。┑捻樞蚺帕,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數可得答案;

(3)用B的人數除以總人數再乘以360°,即可得到圓心角α的度數;

(4)先設甲班學生為A1,A2,乙班學生為B1,B2,B3根據題意畫出樹形圖,再根據概率公式列式計算即可.

試題解析:(1)共調查的中學生數是:80÷40%=200(人),C類的人數是:200﹣60﹣80﹣20=40(人),如圖1:

(2)本次抽樣調查中,學習時間的中位數落在C等級內;

(3)根據題意得:α=×360°=54°

(4)設甲班學生為A1,A2,乙班學生為B1,B2,B3,畫樹狀圖為:

一共有20種等可能結果,其中2人來自不同班級共有12種,P(2人來自不同班級)==

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算。
(1)若28n16n=222 , 求n的值.
(2)已知3m=6,9n=2,求32m4n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE內部時,則∠A與∠1+∠2之間有一種數量關系始終保持不變.請試著找一找這個規(guī)律,你發(fā)現的規(guī)律是(
A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點O,∠1=∠2.
(1)求證:四邊形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩個全等的△ABC和△DEF重疊在一起,固定△ABC,將△DEF進行如下變換:
(1)如圖1,△DEF沿直線CB向右平移(即點F在線段CB上移動),連接AF、AD、BD,請直接寫出S△ABC與S四邊形AFBD的關系
(2)如圖2,當點F平移到線段BC的中點時,若四邊形AFBD為正方形,那么△ABC應滿足什么條件:請給出證明;
(3)在(2)的條件下,將△DEF沿DF折疊,點E落在FA的延長線上的點G處,連接CG,請你畫出圖形,此時CG與CF有何數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ab3ab2,則a2bab2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A.C的坐標分別為(10,0),(0,3),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知圓的半徑為3,一點到圓心的距離是5,則這點在( )
A.圓內
B.圓上
C.圓外
D.都有可能

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙兩個圓柱形容器(容器足夠高),底面半徑之比為12,用一個管子在甲、乙兩個容器的15厘米高度處連通(即管子底端離容器底15厘米).已知只有乙容器中有水,水位高2厘米,如圖所示.現同時向甲、乙兩個容器注水,平均每分鐘注入乙容器的水量是注入甲容器水量的k倍.開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均為正整數,當甲、乙兩個容器的水位都到達連通管子的位置時,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,設注水時間為t分鐘.

1)求k的值(用含a的代數式表示).

2)當甲容器的水位第一次比乙容器的水位高1厘米時,求t的值.

3)當甲容器的水位第二次比乙容器的水位高1厘米時,求a,kt的值.

查看答案和解析>>

同步練習冊答案