【題目】如圖,點(diǎn)A,B在⊙O上,點(diǎn)C在⊙O外,連接AB和OC交于D,且OB⊥OC,AC=CD.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OC=13,OD=1,求⊙O的半徑及tanB.
【答案】(1)AC是⊙O的切線;見(jiàn)解析(2).
【解析】
試題分析:(1)根據(jù)已知條件“∠CAD=∠CDA”、對(duì)頂角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根據(jù)等腰三角形OAB的兩個(gè)底角相等、直角三角形的兩個(gè)銳角互余的性質(zhì)推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,可得AC是⊙O的切線.
(2)由勾股定理求出OA,得出OB,由三角函數(shù)的定義求出tanB即可.
(1)證明:連接OA,如圖所示:
∵AC=CD,
∴∠CAD=∠CDA,
∵∠BDO=∠CDA,
∴∠BDO=∠CAD,
又∵OA=OB,
∴∠B=∠OAB,
∵OB⊥OC,
∴∠B+∠BDO=∠OAB+∠CAD=90°,
即∠OAC=90°,
∴AC是⊙O的切線;
(2)解:∵OC=13,OD=1,
∴AC=CD=OC﹣OD=12,
∴OA===5,
即⊙O的半徑為5,
∵OB=OA=5,
∴tanB==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+b的圖象與x軸、y軸分別交于點(diǎn)A、B,線段AB的中點(diǎn)為D(3,2).將△AOB沿直線CD折疊,使點(diǎn)A與點(diǎn)B重合,直線CD與x軸交于點(diǎn)C.
(1)求此一次函數(shù)的解析式;
(2)求點(diǎn)C的坐標(biāo);
(3)在坐標(biāo)平面內(nèi)存在點(diǎn)P(除點(diǎn)C外),使得以A、D、P為頂點(diǎn)的三角形與△ACD全等,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC≌△DEF,且AB=4,BC=5,AC=6,則DE的長(zhǎng)為( 。
A. 4 B. 5 C. 6 D. 4或5或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一種石棉瓦,每塊寬60厘米,用于鋪蓋屋頂時(shí),每相鄰兩塊重疊部分的寬都為10厘米,那么n(n為正整數(shù))塊石棉瓦覆蓋的寬度為( ).
A. 60n厘米 B. 50n厘米 C. (50n+10)厘米 D. (60n-10)厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:ACCD=CPBP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)4﹣(﹣2)﹣2﹣32÷(3.14﹣π)0
(2)(3)12×()11×(一2)3
(3)5a(a2﹣3a+1)﹣a2(1﹣a)
(4)(﹣a)3(﹣2ab2)3﹣4ab2(a5b4﹣5)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com