【題目】有理數(shù)和無(wú)理數(shù)統(tǒng)稱(chēng)為_______
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線y=-x+a與直線y=x+b的交點(diǎn)坐標(biāo)為(m,6),則2(a+b)的結(jié)果為( 。
A. 8 B. 16 C. 24 D. 32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】能說(shuō)明命題“關(guān)于x的一元二次方程x2+mx+4=0,當(dāng)m<﹣2時(shí)必有實(shí)數(shù)解”是假命題的一個(gè)反例為( 。
A. m=﹣4 B. m=﹣3 C. m=﹣2 D. m=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在利用完全平方公式計(jì)算一個(gè)二項(xiàng)整式的平方時(shí),不小心用墨水把中間一項(xiàng)的系數(shù)染黑了,得到正確的結(jié)果為4a2■ab+9b2,你認(rèn)為這個(gè)二項(xiàng)整式應(yīng)是( 。
A. 2a+3b B. 2a﹣3b C. 2a±3b D. 4a±9b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.拋物線y=2x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位,則所得拋物線的解析式為y=2x2﹣8x+7
B.方程﹣x2+bx+c=0無(wú)實(shí)數(shù)根,則二次函數(shù)y=﹣x2+bx+c的圖象一定在x軸下方
C.將長(zhǎng)度為1m的木條黃金分割,較短的一段木條長(zhǎng)為m
D.兩個(gè)等腰直角三角形一定相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( ).
A. a2·a3=a5 B. (a4)2=a6 C. 2a2-a2=1 D. (3a)2=3a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠BAC=120°,D為BC上一點(diǎn),AD=DC=2,
(1)求AC的長(zhǎng);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 我們已經(jīng)學(xué)習(xí)了利用配方法解一元二次方程,其實(shí)配方法還有其它重要應(yīng)用.
例:已知x可取任何實(shí)數(shù),試求二次三項(xiàng)式2x2-12x+14的值的范圍.
解:2x2-12x+14=2(x2-6x)+14=2(x2-6x+32-32)+14
=2[(x-3)2-9]+14=2(x-3)2-18+14=2(x-3)2-4.
∵無(wú)論x取何實(shí)數(shù),總有(x-3)2≥0,∴2(x-3)2-4≥-4.
即無(wú)論x取何實(shí)數(shù),2x2-12x+14的值總是不小于-4的實(shí)數(shù).
問(wèn)題:已知x可取任何實(shí)數(shù),則二次三項(xiàng)式-3x2+12x-11的最值情況是( )
A.有最大值-1 B.有最小值-1 C.有最大值1 D.有最小值1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com