【題目】如圖,在四邊形ABCD中,AB∥CD,2AB=2BC=CD=10,tanB=,則AD=______.
【答案】3
【解析】
過A作AF⊥CD于F,過C作CE⊥AB于E,根據(jù)矩形的性質(zhì)得出AF=CE,AE=CF,求出AF和DF長,再根據(jù)勾股定理求出即可.
∵2AB=2BC=CD=10,
∴AB=BC=5,
過A作AF⊥CD于F,過C作CE⊥AB于E,
則∠AEC=∠AFD=∠BEC=90°,AF∥CE,
∵AB∥CD,
∴四邊形AECF是矩形,
∴AE=CF,AF=CE,
∵在Rt△BEC中,tanB=,
又∵BC=5,
CE=3,BE=4,
∴AE=CF=5-4=1,AF=CE=3,
∵CD=10,
∴DF=10-1=9,
在Rt△AFD中,由勾股定理得:AD==3,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DE⊥AB于點E,DF⊥AC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AC=nAB,∠CAB=α,點E,F分別在AB,AC上且EF∥BC,把△AEF繞點A順時針旋轉(zhuǎn)到如圖2的位置.連接CF,BE.
(1)求證:∠ACF=∠ABE;
(2)若點M,N分別是EF,BC的中點,當α=90°時,求證:BE2+CF2=4MN2;
(3)如圖3,點M,N分別在EF,BC上且==,若n=,α=135°,BE=,直接寫出MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,過點A作AD平分∠BAC,交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.
(1)依據(jù)題意,補全圖形(尺規(guī)作圖,保留痕跡);
(2)判斷并證明:直線DE與⊙O的位置關(guān)系;
(3)若AB=10,BC=8,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩家公司員工日工資情況:甲公司日工資是底薪100元,每完成一件產(chǎn)品工資計3元;乙公司無底薪,40件以內(nèi)(含40件)產(chǎn)品的部分每件產(chǎn)品工資計8元,超出40件的部分每件產(chǎn)品工資計10元,為此,在這兩家公司各隨機調(diào)查了100名工人日完成產(chǎn)品數(shù),并整理得到如下頻數(shù)分布表:
日完成產(chǎn)品數(shù) | 38 | 39 | 40 | 41 | 42 |
甲公司工人數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司工人數(shù) | 10 | 20 | 20 | 40 | 10 |
(1)若甲、乙公司日工資加上其他福利,總的待遇相同,A、B兩人分別到甲、乙公司應(yīng)聘,都選中甲公司的概率是多少?
(2)試以這兩家公司各100名工人日工資的平均數(shù)作為決策依據(jù),若某人要去這兩家公司應(yīng)聘,為他做出選擇,去哪一家公司的經(jīng)濟收入可能會多一些?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ACB和△DCE中,AB=AC,DE=DC,點E在AB上
(1)如圖1,若∠ACB=∠DCE=60°,求證:∠DAC=∠EBC;
(2)如圖2,設(shè)AC與DE交于點P.
①若∠ACB=∠DCE=45°,求證:AD∥CB;
②在①的條件下,設(shè)AC與DE交于點P,當tan∠ADE=時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣4,﹣2),B(﹣2,﹣2),C(﹣1,0).
(1)將△ABC向右平移5個單位長度,畫出平移后的△A1B1C1;
(2)將△ABC繞點C旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A2B2C,并直接寫出點A運動的路徑長;
(3)請直接寫出△B1C1B2的外心的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個轉(zhuǎn)盤中指針落在每個數(shù)字上的機會相等,現(xiàn)同時轉(zhuǎn)動、兩個轉(zhuǎn)盤,停止后,指針各指向一個數(shù)字.小力和小明利用這兩個轉(zhuǎn)盤做游戲,若兩數(shù)之積為非負數(shù)則小力勝;否則,小明勝.
(1)畫樹狀圖或列表求出各人獲勝的概率。
(2)這個游戲公平嗎?說說你的理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.
根據(jù)以上情況,請你回答下列問題:
(1)假設(shè)小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?
(2)若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com