【題目】如圖,為了對一顆傾斜的古杉樹AB進(jìn)行保護(hù),需測量其長度:在地面上選取一點C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,(參考數(shù)據(jù): ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).則這顆古杉樹AB的長約為(
A.7.27
B.16.70
C.17.70
D.18.18

【答案】D
【解析】解:過B點作BD⊥AC于D. ∵∠ACB=45°,∠BAC=66.5°,
∴在Rt△ADB中,AD= ,
在Rt△CDB中,CD=BD,
∵AC=AD+CD=24m,
+BD=24,
解得BD≈17m.
AB= ≈18.18m.
答:這棵古杉樹AB的長度大約為18.18m.
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )

A. 1個; B. 2個; C. 3個; D. 4個;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD沿折痕EF對折,使點C與點A重合,點D落在點G處,如果此時∠BAF剛好等于30°,AD=6,求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小紅在某個路口統(tǒng)計20分鐘各種車輛通過情況制成的統(tǒng)計表,其中空格處的字跡已模糊,但小紅還記得750800時段內(nèi)的電瓶車車輛數(shù)與800810時段內(nèi)的貨車車輛數(shù)之比是72

電瓶車

公交車

貨車

小轎車

合計

750800

5

63

133

800810

5

45

82

合計

67

30

108

(1)若在750800時段,經(jīng)過的小轎車數(shù)量正好是電瓶車數(shù)量的,求這個時段內(nèi)的電瓶車通過的車輛數(shù);

(2)根據(jù)上述表格數(shù)據(jù),求在750800800810兩個時段內(nèi)電瓶車和貨車的車輛數(shù);

(3)據(jù)估計,在所調(diào)查的750800時段內(nèi),每增加1輛公交車,可減少8輛小轎車行駛,為了使該時段內(nèi)小轎車流量減少到比公交車多13輛,則在該路口應(yīng)再增加幾輛公交車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖擺放,其中△ABC為含有45度角的三角板,直線AD是等腰直角三角形ABC的對稱軸,且將△ABC分成兩個等腰直角三角形,DM、DN分別與邊AB、AC交于E、F兩點,有下列四個結(jié)論:①BD=AD=CD②△AED≌△CFD③BE+CF=EF④S四邊形AEDFAB2.其中正確結(jié)論是_____(填寫正確序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D在⊙O上, =2 , =3 ,延長BC,AD交于點P,若∠CBD=18°,則∠P的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學(xué)校計劃購買某品牌的籃球做獎品,該品牌的籃球在AB兩個超市的標(biāo)價相同根據(jù)商場的活動方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5請求出這種籃球的標(biāo)價;

(2)學(xué)校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線y=kx+bx軸交于點A(6,0),與y軸交于點B,與直線y=2x交于點C(a,4).

(1)求點C的坐標(biāo)及直線AB的表達(dá)式;

(2)如圖2,在(1)的條件下,過點E作直線lx軸于點E,交直線y=2x于點F,交直線y=kx+b于點G,若點E的坐標(biāo)是(4,0).

①求CGF的面積;

②直線l上是否存在點P,使OP+BP的值最?若存在,直接寫出點P的坐標(biāo);若不存在,說明理由;

(3)若(2)中的點Ex軸上的一個動點,點E的橫坐標(biāo)為m(m>0),當(dāng)點Ex軸上運動時,探究下列問題:

當(dāng)m取何值時,直線l上存在點Q,使得以A,C,Q為頂點的三角形與AOC全等?請直接寫出相應(yīng)的m的值.

查看答案和解析>>

同步練習(xí)冊答案