已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB邊上的動點(與點A、B不重合),Q是BC邊上的動點(與點B、C不重合)
(1)如圖,當PQ∥AC,且Q為BC的中點時,求線段CP的長;
(2)當PQ與AC不平行時,△CPQ可能為直角三角形嗎?若有可能,請求出線段CQ的長的取值范圍;若不可能,請說明理由.

【答案】分析:(1)根據(jù)平行線等分線段定理得到點P是斜邊的中點,再直角三角形斜邊上的中線等于斜邊的一半,要求線段CP的長,只需根據(jù)勾股定理求得AB的長.
(2)若PQ與AC不平行,則要使△CPQ成為直角三角形.只需保證∠CPQ=90°.根據(jù)直徑所對的圓周角是直角,則分析以CQ為直徑的圓和斜邊AB的公共點的情況:一是半圓和AB相切;二是半圓和AB相交.首先求得相切時CQ的值,即可進一步求得相交時CQ的范圍.
解答:解:(1)在Rt△ABC中∠ACB=90°,AC=5,BC=12,
∴AB=13;
∵Q是BC的中點,
∴CQ=QB;
又∵PQ∥AC,
∴AP=PB,即P是AB的中點,
∴Rt△ABC中,CP=

(2)當AC與PQ不平行時,只有∠CPQ為直角,△CPQ才可能是直角三角形.
以CQ為直徑作半圓D,
①當半圓D與AB相切時,設切點為M,連接DM,則
DM⊥AB,且AC=AM=5,
∴MB=AB-AM=13-5=8;
設CD=x,則DM=x,DB=12-x;
在Rt△DMB中,DB2=DM2+MB2
即(12-x)2=x2+82,
解之得x=
∴CQ=2x=;
即當CQ=且點P運動到切點M位置時,△CPQ為直角三角形.
②當<CQ<12時,半圓D與直線AB有兩個交點,當點P運動到這兩個交點的位置時,△CPQ為直角三角形
③當0<CQ<時,半圓D與直線AB相離,即點P在AB邊上運動時,均在半圓D外,∠CPQ<90°,此時△CPQ不可能為直角三角形.
∴當≤CQ<12時,△CPQ可能為直角三角形.
點評:綜合運用了直角三角形的性質、圓周角定理的推論以及切線的性質和勾股定理進行計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉一周,則所得幾何體的表面積是( 。
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點.
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長是關于x的方程x2-(m+5)x+6m=0的兩個實數(shù)根.求m的值及AC、BC的長(BC>AC).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點D在BC的延長線上,點E在AC上,且CD=CE,延長BE交AD于點F,求證:BF⊥AD.

查看答案和解析>>

同步練習冊答案