【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的兩點(diǎn)A、B,與y軸交于C點(diǎn).過點(diǎn)A作AD⊥y軸,垂足為點(diǎn)D,AD=8,OC=2,tan∠ACD=2.點(diǎn)B的坐標(biāo)為(m,﹣4).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x取何值時(shí),ax+b﹣>0成立.
【答案】(1)y=,y=x+2;(2)當(dāng)﹣12<x<0或x>8時(shí),ax+b﹣>0成立.
【解析】
(1)先利用正切的定義計(jì)算出CD,從而得到A點(diǎn)坐標(biāo),從而把A點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;再利用反比例函數(shù)解析式確定B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)利用函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對(duì)應(yīng)的自變量的值即可.
(1)在Rt△ACD中,tan∠ACD==2,
∴CD=AD=4,
∵OC=2,
∴OD=6,
∴A(8,6),
把A(8,6)代入y=得k=8×6=48,
∴反比例函數(shù)解析式為y=,
把B(m,﹣4)代入y=得﹣4m=48,解得m=﹣12,
∴B(﹣12,﹣4),
把A(8,6),B(﹣12,﹣4)代入y=ax+b得,解得,
∴一次函數(shù)解析式為y=x+2;
(2)當(dāng)﹣12<x<0或x>8時(shí),ax+b﹣>0成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時(shí),∠EDC=______°,∠DEC=______°;點(diǎn)D從B向C運(yùn)動(dòng)時(shí),∠BDA逐漸變______(填“大”或“小”);
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請(qǐng)說明理由;
(3)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出∠BDA的度數(shù).若不可以,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2﹣4ax+c與直線y=kx+1(k≠0)交于y軸上一點(diǎn)A和第一象限內(nèi)一點(diǎn)B,該拋物線頂點(diǎn)H的縱坐標(biāo)為5.
(1)求拋物線的解析式;
(2)連接AH、BH,拋物線的對(duì)稱軸與直線y=kx+1(k≠0)交于點(diǎn)K,若S△AHB=,求k的值;
(3)在(2)的條件下,點(diǎn)P是直線AB上方的拋物線上的一動(dòng)點(diǎn)(如圖2),連接PA.當(dāng)∠PAB=45°時(shí),
ⅰ)求點(diǎn)P的坐標(biāo);
ⅱ)已知點(diǎn)M在拋物線上,點(diǎn)N在x軸上,當(dāng)四邊形PBMN為平行四邊形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某次訓(xùn)練中,甲、乙兩名射擊運(yùn)動(dòng)員各射擊10發(fā)子彈的成績(jī)統(tǒng)計(jì)圖如圖所示,對(duì)于本次訓(xùn)練,有如下結(jié)論:①S甲2>S乙2;②S甲2<S乙2;③甲的射擊成績(jī)比乙穩(wěn)定;④乙的射擊成績(jī)比甲穩(wěn)定,由統(tǒng)計(jì)圖可知正確的結(jié)論是( )
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)對(duì)徐州市相關(guān)的市場(chǎng)物價(jià)調(diào)研,預(yù)計(jì)進(jìn)入夏季后的某一段時(shí)間,某批發(fā)市場(chǎng)內(nèi)的甲種蔬菜的銷售利潤(rùn)y1(千元)與進(jìn)貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤(rùn)y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)的圖象如圖②所示.
(1)分別求出y1、y2與x之間的函數(shù)關(guān)系式;
(2)如果該市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種蔬菜共10噸,設(shè)乙種蔬菜的進(jìn)貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤(rùn)之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種蔬菜各進(jìn)多少噸時(shí) 獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“8字”的性質(zhì)及應(yīng)用:
(1)如圖①,AD、BC相交于點(diǎn)O,得到一個(gè)“8字”ABCD,求證:∠A+∠B=∠C+∠D.
(2)圖②中共有多少個(gè)“8字”?
(3)如圖②,∠ABC和∠ADC的平分線相交于點(diǎn)E,利用(1)中的結(jié)論證明∠E=(∠A+∠C).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=6,BC=8.
(1)求對(duì)角線AC的長(zhǎng);
(2)點(diǎn)E是線段CD上的一點(diǎn),把△ADE沿著直線AE折疊.點(diǎn)D恰好落在線段AC上,與點(diǎn)F重合,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,A為x軸負(fù)半軸上的點(diǎn),B為y軸負(fù)半軸上的點(diǎn).
(1)如圖①,以A點(diǎn)為頂點(diǎn),AB為腰在第三象限作等腰Rt△ABC.若已知A(﹣2,0)B(0,﹣4),試求C點(diǎn)的坐標(biāo);
(2)如圖②,若點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(0,a),點(diǎn)D的縱坐標(biāo)為b,以B為頂點(diǎn),BA為腰作等腰Rt△ABD,當(dāng)B點(diǎn)沿y軸負(fù)半軸向下運(yùn)動(dòng)且其他條件都不變時(shí),求b﹣a的值;
(3)如圖③,E為x軸負(fù)半軸上的一點(diǎn),且OB=OE,OF⊥EB于點(diǎn)F,以OB為邊在第四象限作等邊△OBM,連接EM交OF于點(diǎn)N,探究EM-ON與EN的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com