【題目】如圖,ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線,分別交AD,ACP,Q兩點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)證明AP=AQ.

【答案】(1)作圖見解析;(2)證明見解析.

【解析】分析:(1)根據(jù)角平分線的性質(zhì)作出BQ即可

(2)先根據(jù)垂直的定義得出∠ADB=90°,故∠BPD+∠PBD=90°.再根據(jù)余角的定義得出∠AQP+∠ABQ=90°,根據(jù)角平分線的性質(zhì)得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,據(jù)此可得出結(jié)論.

詳解:(1)如圖所示,BQ為所求作

(2)∵BQ平分∠ABC ∴∠ABQ=∠CBQ

△ABQ中,∠BAC=90°

∴∠AQP+∠ABQ=90°

∵AD⊥BC ∴∠ADB=90°

∴在Rt△BDP中,∠CBQ+∠BPD=90°

∵∠ABQ=∠CBQ ∴∠AQP=∠BPD

又∵∠BPD=∠APQ

∴∠AQP=∠AQP ∴AP=AQ

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲取利潤500元;制成酸奶銷售,每噸可獲取利潤1200元;制成奶片銷售,每噸可獲取利潤 2000元。

該加工廠的生產(chǎn)能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時進行。受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢。為此,該廠設(shè)計了兩種可行方案:

方案一:盡可能多地制成奶片,其余直接銷售鮮奶;

方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。

你認為哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).

(1)四邊形EFGH是什么四邊形?證明你的結(jié)論.

(2)當四邊形ABCD的對角線滿足 條件時,四邊形EFGH是矩形;

(3)你學過的哪種特殊四邊形的中點四邊形是矩形? . (填一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費.年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔.某戶應(yīng)交天然氣費y(元)與年用天然氣量x(立方米)的關(guān)系如圖所示,觀察圖像并回答下列問題:

(1)年用天然氣量不超過310立方米時,求y關(guān)于x的函數(shù)解析式(不寫定義域);

(2)小明家2017年天然氣費為1029元,求小明家2017年使用天然氣量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知在△ABC中,AB=AC,tanB=,BC =4,點E是在線段BA延長線上一點,以點E為圓心,EC為半徑的圓交射線BC于點C、F(點C、F不重合),射線EF與射線AC交于點P.

(1)求證:AE2=AP·AC;

(2)當點F在線段BC上,設(shè)CF=x,△PFC的面積為y,求y關(guān)于x的函數(shù)解析式及定義域;

(3)當 時,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車間同時從A地出發(fā)前往B地,沿著相同的路線勻速駛向B地,甲車中途由于某種原因休息了1小時,然后按原速繼續(xù)前往B地,兩車離A地的距離y(km)與行駛的時間x(h)之間的函數(shù)關(guān)系如圖所示:

(1)AB兩地的距離是__________km;

(2)求甲車休息后離A地的距離y(km)x(h)之間的函數(shù)關(guān)系;

(3)請直接寫出甲、乙兩車何時相聚15km。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,,分別為,上的點,,于點于點,的中點,于點,連接.下列結(jié)論:①;②;③;④.其中正確的結(jié)論有(

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DAAB于點A,CBAB于點B,已知DA15 km,CB10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?

查看答案和解析>>

同步練習冊答案