精英家教網 > 初中數學 > 題目詳情

如圖,已知二次函數的圖象過點O(0,0),A(4,0),B(2,﹣),M是OA的中點.
(1)求此二次函數的解析式;
(2)設P是拋物線上的一點,過P作x軸的平行線與拋物線交于另一點Q,要使四邊形PQAM是菱形,求P點的坐標;
(3)將拋物線在x軸下方的部分沿x軸向上翻折,得曲線OB′A(B′為B關于x軸的對稱點),在原拋物線x軸的上方部分取一點C,連接CM,CM與翻折后的曲線OB′A交于點D.若△CDA的面積是△MDA面積的2倍,這樣的點C是否存在?若存在求出C點的坐標,若不存在,請說明理由.

(1) y=x2x.(2) P(1,﹣).(3) 點C的坐標為(2+2,)或(2﹣2,).

解析試題分析:(1)利用待定系數法求出二次函數的解析式;
(2)由四邊形PQAM是菱形,可知PQ=2且PQ∥x軸,因此點P、Q關于對稱軸x=2對稱,可得點P橫坐標為1,從而求出點P的坐標;
(3)假設存在滿足條件的點C.由△CDA的面積是△MDA面積的2倍,可得點C縱坐標是點D縱坐標的3倍,由此列方程求出點C的坐標.
試題解析:(1)∵拋物線過原點,∴設其解析式為:y=ax2+bx.
∵拋物線經過點A(4,0),B(2,﹣),
,解得,
∴二次函數解析式為:y=x2x.
(2)∵y=x2x=(x﹣2)2,
∴拋物線對稱軸為直線:x=2.
∵四邊形PQAM是菱形,
∴PQ=MA=2,PQ∥x軸.
∴點P、Q關于對稱軸x=2對稱,
∴點P橫坐標為1.
當x=1時,y==﹣
∴P(1,﹣).
(3)依題意,翻折之后的拋物線解析式為:y=﹣x2+x.
假設存在這樣的點C,
∵△CDA的面積是△MDA面積的2倍,
∴CD=2MD,∴CM=3MD.
如圖所示,分別過點D、C作x軸的垂線,垂足分別為點E、點F,則有DE∥CF.

,
∴CF=3DE,MF=3ME.
設C(x,x2x),
則MF=x﹣2,ME=MF=(x﹣2),OE=ME+OM=x+
∴D(x+,﹣(x+)2+(x+)).
∵CF=3DE,
x2x=3[﹣(x+)2+(x+)],
整理得:x2﹣4x﹣8=0,
解得:x1=2+2,x2=2﹣2
∴y1=,y2=
∴存在滿足條件的點C,點C的坐標為(2+2,)或(2﹣2,).
考點:二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

如圖,在平面直角坐標系xOy中,若動點P在拋物線y=ax2上,⊙P恒過點F(0,n),且與直線y=﹣n始終保持相切,則n=   (用含a的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,經過原點的拋物線y=-x2+bx(b>2)與x軸的另一交點為A,過點P(1,)作直線PN⊥x軸于點N,交拋物線于點B.點B關于拋物線對稱軸的對稱點為C.連結CB,CP.
(1)當b=4時,求點A的坐標及BC的長;
(2)連結CA,求b的適當的值,使得CA⊥CP;
(3)當b=6時,如圖2,將△CBP繞著點C按逆時針方向旋轉,得到△CB′P′,CP與拋物線對稱軸的交點為E,點M為線段B′P′(包含端點)上任意一點,請直接寫出線段EM長度的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直線y=﹣3x﹣3與x軸、y軸分別相交于點A、C,經過點C且對稱軸為x=1的拋物線y=ax2+bx+c與x軸相交于A、B兩點.
(1)試求點A、C的坐標;
(2)求拋物線的解析式;
(3)若點M在線段AB上以每秒1個單位長度的速度由點B向點A運動,同時,點N在線段OC上以相同的速度由點O向點C運動(當其中一點到達終點時,另一點也隨之停止運動),又PN∥x軸,交AC于P,問在運動過程中,線段PM的長度是否存在最小值?若有,試求出最小值;若無,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知直線過點,軸正半軸上的動點,的垂直平分線交于點,交軸于點
(1)直接寫出直線的解析式;
(2)當時,設的面積為,求S關于t的函數關系式;并求出S的最大值;
(3)當點Q在線段AB上(Q與A、B不重合)時,直線過點A且與x軸平行,問在上是否存在點C,使得是以為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線經過點A(1,0),B(5,0),C(0,)三點,設點E(x,y)是拋物線上一動點,且在x軸下方,四邊形OEBF是以OB為對角線的平行四邊形.

(1)求拋物線的解析式;
(2)當點E(x,y)運動時,試求平行四邊形OEBF的面積S與x之間的函數關系式,并求出面積S的最大值?
(3)是否存在這樣的點E,使平行四邊形OEBF為正方形?若存在,求E點,F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線y=x2+mx+(m﹣1)與x軸交于點A(x1,0),B(x2,0),x1<x2,與y軸交于點C(0,c),且滿足x12+x22+x1x2=7.
(1)求拋物線的解析式;
(2)在拋物線上能不能找到一點P,使∠POC=∠PCO?若能,請求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線C1:y=(x+m)2(m為常數,m>0),平移拋物線y=﹣x2,使其頂點D在拋物線C1位于y軸右側的圖象上,得到拋物線C2.拋物線C2交x軸于A,B兩點(點A在點B的左側),交y軸于點C,設點D的橫坐標為a.

(1)如圖1,若m=
①當OC=2時,求拋物線C2的解析式;
②是否存在a,使得線段BC上有一點P,滿足點B與點C到直線OP的距離之和最大且AP=BP?若存在,求出a的值;若不存在,請說明理由;
(2)如圖2,當OB=2﹣m(0<m<)時,請直接寫出到△ABD的三邊所在直線的距離相等的所有點的坐標(用含m的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.

查看答案和解析>>

同步練習冊答案