如圖,經過原點的拋物線y=-x2+bx(b>2)與x軸的另一交點為A,過點P(1,)作直線PN⊥x軸于點N,交拋物線于點B.點B關于拋物線對稱軸的對稱點為C.連結CB,CP.
(1)當b=4時,求點A的坐標及BC的長;
(2)連結CA,求b的適當?shù)闹,使得CA⊥CP;
(3)當b=6時,如圖2,將△CBP繞著點C按逆時針方向旋轉,得到△CB′P′,CP與拋物線對稱軸的交點為E,點M為線段B′P′(包含端點)上任意一點,請直接寫出線段EM長度的取值范圍.

(1)(4,0),2;(2)3;(3)4-≤EM≤3

解析試題分析:(1)利用拋物線y=-x2+4x,求出點A的坐標及BC的長,
(2)過點C作CD⊥x軸于點D,利用△CBP∽△CDA,求出b的值.
(3)利用拋物線y=-x2+6x,求出BC,PC及EP的長,再分兩種情況①當BC在CP上時,且M點與B′點重合時線段EM最短,②當BC在PC延長線上時,且M點與P′點重合時線段EM最長,求出線段EM長度的取值范圍.
試題解析:(1)∵b=4,
∴拋物線y=-x2+4x,
在y=-x2+4中,
令y=0,得-x2+4x=0,
∴x1=0,x2=4
∴A(4,0)
令x=1,得y=3
∴B(1,3)
∵對稱軸x=-=2
∴C(3,3)
∴BC=2
(2)如圖1,過點C作CD⊥x軸于點D,

∵∠BCP+∠PCD=90°,∠DCA+∠PCD=90°,
∴∠BCP=∠DCA,
又∵∠CBP=∠CDA=90°
∴△CBP∽△CDA

在y=-x2+bx中,
令x=1,則y=b-1
∴B(1,b-1)
又∵對稱軸x=-,
∴BC=2(-1)=b-2,
∴C(b-1,b-1),
∴CD=b-1,BC=b-2,DA=ON=1,BP=b-1-=-1,
,
∴b=3.
(3)∵b=6,
∴拋物線y=-x2+6x
在y=-x2+6x中,
令x=1,得y=5
∴B(1,5)
∵對稱軸x=
∴C(5,5)
∴BC=4,
∵P(1,),
∴P(1,3),
∴BP=5-3=2,
∴PC=
∵CP與拋物線對稱軸的交點為E,
∴EP=EC=PC=,
①如圖2,當BC在CP上時,且M點與B′點重合時線段EM最短,

∴EM=EP-(PC-BC)=-(2-4)=4-
②如圖3,當BC在PC延長線上時,且M點與P′點重合時線段EM最長,

EM=EC+P′C=+2=3
∴4-≤EM≤3
考點:二次函數(shù)綜合題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

若關于x函數(shù)的圖像與x軸有唯一公共點,則=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

二次函數(shù)的圖象如圖,點A0位于坐標原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=x2﹣4x+3.
(1)求該拋物線的頂點坐標和對稱軸方程;
(2)求該拋物線與x軸的交點坐標;
(3)當x為何值時,y≤0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,在平面直角坐標系中,點A是拋物線y=x2在第一象限上的一個點,連結OA,過點A作AB⊥OA,交y軸于點B,設點A的橫坐標為n.

【探究】:
(1)當n=1時,點B的縱坐標是  ;
(2)當n=2時,點B的縱坐標是  
(3)點B的縱坐標是  (用含n的代數(shù)式表示).
【應用】:
如圖②,將△OAB繞著斜邊OB的中點順時針旋轉180°,得到△BCO.
(1)求點C的坐標(用含n的代數(shù)式表示);
(2)當點A在拋物線上運動時,點C也隨之運動.當1≤n≤5時,線段OC掃過的圖形的面積是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線經過點A(﹣2,0)、B(4,0)、C(0,﹣8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)直線CD交x軸于點E,過拋物線上在對稱軸的右邊的點P,作y軸的平行線交x軸于點F,交直線CD于M,使PM=EF,請求出點P的坐標;
(3)將拋物線沿對稱軸平移,要使拋物線與(2)中的線段EM總有交點,那么拋物線向上最多平移多少個單位長度,向下最多平移多少個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=ax2+x+c與x軸交于點A(4,0)、B(-1,0),與y軸交于點C,連接AC,點M是線段OA上的一個動點(不與點O、A重合),過點M作MN∥AC,交OC于點N,將△OMN沿直線MN折疊,點O的對應點O′落在第一象限內,設OM=t,△O′MN與梯形AMNC重合部分面積為S.
(1)求拋物線的解析式;
(2)①當點O′落在AC上時,請直接寫出此時t的值;
②求S與t的函數(shù)關系式;
(3)在點M運動的過程中,請直接寫出以O、B、C、O′為頂點的四邊形分別是等腰梯形和平行四邊形時所對應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知二次函數(shù)的圖象過點O(0,0),A(4,0),B(2,﹣),M是OA的中點.
(1)求此二次函數(shù)的解析式;
(2)設P是拋物線上的一點,過P作x軸的平行線與拋物線交于另一點Q,要使四邊形PQAM是菱形,求P點的坐標;
(3)將拋物線在x軸下方的部分沿x軸向上翻折,得曲線OB′A(B′為B關于x軸的對稱點),在原拋物線x軸的上方部分取一點C,連接CM,CM與翻折后的曲線OB′A交于點D.若△CDA的面積是△MDA面積的2倍,這樣的點C是否存在?若存在求出C點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

拋物線軸交于點A,B,與y軸交于點C,其中點B的坐標為.
(1)求拋物線對應的函數(shù)表達式;]
(2)將(1)中的拋物線沿對稱軸向上平移,使其頂點M落在線段BC上,記該拋物線為G,求拋物線G所對應的函數(shù)表達式;
(3)將線段BC平移得到線段(B的對應點為,C的對應點為),使其經過(2)中所得拋物線G的頂點M,且與拋物線G另有一個交點N,求點到直線的距離的取值范圍.

查看答案和解析>>

同步練習冊答案