【題目】(2016·無錫中考)如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( )
A. B. 2 C. 3 D. 2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,CE平分∠BCD交AB于點E,交BD于點F,且∠ABC=60°,AB=2BC,連接OE.下列結(jié)論:①∠ACD=30°;②SABCD=AC·BC;③OE∶AC=∶6;④S△OCF=2S△OEF.成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=,AB=8,AD=3,BC=4,點P為AB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是( 。
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點.現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.如圖,若該拋物線經(jīng)過原點O,且a=-.
(1)求點D的坐標(biāo)及該拋物線的解析式;
(2)連結(jié)CD.問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在13×13的網(wǎng)格圖中,已知△ABC和點M(1,2).
(1)以點M為位似中心,畫出△ABC的位似圖形△A′B′C′,其中△A′B′C′與△ABC的位似比為2;
(2)寫出△A′B′C′的各頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖形:(1)線段;(2)圓;(3)等腰三角形,(4)平行四邊形、(5)角、(6)正方形在這6種圖形中一定是軸對稱圖形的有( )
A. 6個B. 5個C. 4個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·濱州中考)如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F,則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com