【題目】(2016·無錫中考)如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是(  )

A. B. 2 C. 3 D. 2

【答案】A

【解析】∵∠C=90°,ABC=30°,AC=2,

AB=4,A=60°,

由勾股定理得,BC==,

由旋轉(zhuǎn)的性質(zhì)可知,CA=CA′,由∠A=60°,

ACA′是等邊三角形,

AA′=2,

A′B=2,

由旋轉(zhuǎn)的性質(zhì)可知,B BC是等邊三角形,

BB =,

BD=,

由勾股定理得,AD=.

故選:A.

點睛: 本題考查旋轉(zhuǎn)的性質(zhì)、30度角的直角三角形性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是證明ACA1,BCB1是等邊三角形,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點O,CE平分∠BCDAB于點E,交BD于點F,且∠ABC60°,AB2BC,連接OE.下列結(jié)論:①∠ACD30°;SABCDAC·BC;OEAC6;SOCF2SOEF.成立的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,∠ABC=AB=8,AD=3,BC=4,點PAB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點.現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.如圖,若該拋物線經(jīng)過原點O,且a=-.

(1)求點D的坐標(biāo)及該拋物線的解析式;

(2)連結(jié)CD.問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】13×13的網(wǎng)格圖中,已知ABC和點M(1,2).

(1)以點M為位似中心,畫出ABC的位似圖形A′B′C′,其中A′B′C′ABC的位似比為2;

(2)寫出A′B′C′的各頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(﹣1)2017的結(jié)果是(
A.﹣1
B.1
C.﹣2017
D.2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);

(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖形:(1)線段;(2)圓;(3)等腰三角形,(4)平行四邊形、(5)角、(6)正方形在這6種圖形中一定是軸對稱圖形的有( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·濱州中考)如圖,AB是⊙O的直徑,CD是⊙O上的點,且OCBD,AD分別與BC,OC相交于點EF,則下列結(jié)論:①ADBD;②∠AOC=∠AEC;③CB平分∠ABD;④AFDF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是(  )

A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤

查看答案和解析>>

同步練習(xí)冊答案