【題目】(1)兩條直線相交于一點有2組不同的對頂角;

(2)三條直線相交于一點有6組不同的對頂角;

(3)四條直線相交于一點有12組不同的對頂角;

(4)n條直線相交于同一點有___________組不同對頂角.(如圖所示)

【答案】n(n-1)

【解析】因為兩條直線相交于一點有2組不同的對頂角;三條直線相交于一點有6組不同的對頂角;四條直線相交于一點有12組不同的對頂角;n條直線相交時,這個圖形的對頂角的個數(shù)是:n(n-1)對對頂角.

解:(1)2條直線相交于一點有2×1=2組不同的對頂角;
(2)3條直線相交于一點有3×2=6組不同的對頂角;
(3)4條直線相交于一點有4×3=12組不同的對頂角;
按照以上規(guī)律可得:
(4)n條直線相交于一點有n(n-1)組不同的對頂角.

“點睛”本題是一個探索規(guī)律型的題目,解決時注意觀察每對數(shù)之間的關(guān)系.這是中考中經(jīng)常出現(xiàn)的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=100°,AC=AE,BC=BD,則∠DCE的度數(shù)為

A. 20° B. 25° C. 30° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,分別延長△ABC的邊AB、ACD、E,∠CBD與∠BCE的平分線相交于點P,愛動腦筋的小明在寫作業(yè)的時發(fā)現(xiàn)如下規(guī)律:

(1)若∠A=60°,則∠P=   °;

(2)若∠A=40°,則∠P=   °;

(3)若∠A=100°,則∠P=   °;

(4)請你用數(shù)學(xué)表達(dá)式歸納∠A與∠P的關(guān)系   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°AD平分∠CAB,交CB于點D,過點DDEAB,于點E

1)求證:△ACD≌△AED;

2)若∠B=30°CD=1,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC邊上的一點,DGAB,延長ABE,使BE=GD,連接DEBCF.

(1)求證:GF=BF;

(2)ABC的邊長為a,BE的長為b,且a,b滿足(a﹣7)2+b2﹣6b+9=0,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若∠2=6,則_______;如果∠BCD+ADC=180°,那么________;如果∠9=_____,那么ADBC;如果∠9=____,那么ABCD;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知銳角三角形ABC,以點A為圓心,AC為半徑畫弧與BC交于點E,分別以點E、C為圓心,以大于 EC的長為半徑畫弧相交于點P,作射線AP,交BC于點D.若BC=5,AD=4,tan∠BAD= ,則AC的長為(
A.3
B.5
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時,求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建國家文明城市,我市特在每個紅綠燈處設(shè)置了文明監(jiān)督崗,文明勸導(dǎo)員老牛某工作日在市中心的一個十字路口,對闖紅燈的人數(shù)進(jìn)行統(tǒng)計.根據(jù)上午7:00~12:00中各時間段闖紅燈的人數(shù)制作了如圖所示的尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖解答下列問題:
(1)該工作日7:00~12:00共有人闖紅燈?
(2)①補全條形統(tǒng)計圖, ②計算扇形統(tǒng)計圖中10~11點所對應(yīng)的圓心角的度數(shù).
(3)該工作日7:00~12:00,各時間段闖紅燈的人數(shù)的方差是
(4)請你根據(jù)統(tǒng)計圖提供的信息向交通管理部門提出一條合理化建議.

查看答案和解析>>

同步練習(xí)冊答案