【題目】在平面直角坐標(biāo)系中,點 , ,將直線平移與雙曲線在第一象限的圖象交于、兩點.
(1)如圖1,將繞逆時針旋轉(zhuǎn)得與對應(yīng),與對應(yīng)),在圖1中畫出旋轉(zhuǎn)后的圖形并直接寫出、坐標(biāo);
(2)若,
①如圖2,當(dāng)時,求的值;
②如圖3,作軸于點,軸于點,直線與雙曲線有唯一公共點時,的值為 .
【答案】(1)作圖見解析,,;(2)①k=6;②.
【解析】
(1)根據(jù)題意,畫出對應(yīng)的圖形,根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,從而求出點E、F的坐標(biāo);
(2)過點作軸于,過點作軸于,過點作于,根據(jù)相似三角形的判定證出,列出比例式,設(shè),根據(jù)反比例函數(shù)解析式可得(Ⅰ);
①根據(jù)等角對等邊可得,可列方程(Ⅱ),然后聯(lián)立方程即可求出點D的坐標(biāo),從而求出k的值;
②用m、n表示出點M、N的坐標(biāo)即可求出直線MN的解析式,利于點D和點C的坐標(biāo)即可求出反比例函數(shù)的解析式,聯(lián)立兩個解析式,令△=0即可求出m的值,從而求出k的值.
解:(1)點 , ,
,,
如圖1,
由旋轉(zhuǎn)知,,,,
點在軸正半軸上,點在軸負(fù)半軸上,
,;
(2)過點作軸于,過點作軸于,過點作于,
,,
,
,
,
,
,
,
,
,
,,,
,,
,
設(shè),
,
,,
點,在雙曲線上,
,
(Ⅰ)
①,
,
,
,
(Ⅱ),
聯(lián)立(Ⅰ)(Ⅱ)解得:,,
;
②如圖3,
,,
,,
,
,
直線的解析式為(Ⅲ),
雙曲線(Ⅳ),
聯(lián)立(Ⅲ)(Ⅳ)得:,
即:,
△,
直線與雙曲線有唯一公共點,
△,
△,
(舍或,
,
.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=x2﹣x+2與直線y=x﹣2的圖象如圖,點P是拋物線上的一個動點,則點P到直線y=x﹣2的最短距離為( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實驗可能是( 。
A. 拋一枚硬幣,出現(xiàn)正面朝上
B. 擲一個正六面體的骰子,出現(xiàn)3點朝上
C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標(biāo),且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)寫出不等式ax2+bx+c≥0的解集;
(3)設(shè)此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標(biāo);
(4)在x軸上有一動點M,當(dāng)MQ+MA取得最小值時,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件成本40元,出于營銷考慮,要求每件售價不得低于40元,但物價部門要求每件售價不得高于60元.據(jù)市場調(diào)查,銷售單價是50元時,每天的銷售量是100件,而銷售單價每漲1元,每天就少售出2件,設(shè)單價上漲元.
(1)求當(dāng)為多少時每天的利潤是1350元?
(2)設(shè)每天的銷售利潤為,求銷售單價為多少元時,每天利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點B,AC邊上一點O,⊙O經(jīng)過點B、C,與AC交于點D,與CE交于點F,連結(jié)BF。
(1)求證:AE是⊙O的切線;
(2)若,AE=8,求⊙O的半徑;
(3)在(2)條件下,求BF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若ED=6,AE=10,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達(dá)式;
(2)點P是線段BD上一點,當(dāng)PE=PC時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com