【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若ED=6,AE=10,則菱形AECF的面積是多少?
【答案】(1)詳見解析;(2)詳見解析;(3)96
【解析】
(1)由PQ為線段AC的垂直平分線得到AE=CE,AD=CD,然后根據(jù)CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA證得兩三角形全等即可;
(2)根據(jù)全等得到AE=CF,然后根據(jù)EF為線段AC的垂直平分線,得到EC=EA,FC=FA,從而得到EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形;
(3)由菱形的性質(zhì)和勾股定理求出AD,得出AC的長,由菱形的面積公式即可得出結(jié)果.
(1)證明:∵PQ為線段AC的垂直平分線,
∴AE=CE,AD=CD,
∵CF∥AB,
∴∠EAC=∠FCA,∠CFD=∠AED,
在△AED與△CFD中,
∴△AED≌△CFD(AAS);
(2)證明:∵△AED≌△CFD,
∴AE=CF,
∵EF為線段AC的垂直平分線,
∴EC=EA,FC=FA,
∴EC=EA=FC=FA,
∴四邊形AECF為菱形;
(3)解:∵四邊形AECF是菱形,
∴AC⊥EF,
∵ED=6,AE=10,
∴EF=2ED=12,AD==8.
∴AC=2AD=16,
∴菱形AECF的面積=ACEF=×16×12=96.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點A(﹣1,0)、B(2,0),與y軸交于點C(0,﹣2),頂點為P
(1)求拋物線的解析式;
(2)如圖,若直線PM與BC交于Q,且sin∠CQP=,求點M的坐標;
(3)將拋物線平移至頂點為坐標原點,過F(0,)的直線交拋物線于G、H,GO交直線y=﹣于點N,求證:HN∥y軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點 , ,將直線平移與雙曲線在第一象限的圖象交于、兩點.
(1)如圖1,將繞逆時針旋轉(zhuǎn)得與對應,與對應),在圖1中畫出旋轉(zhuǎn)后的圖形并直接寫出、坐標;
(2)若,
①如圖2,當時,求的值;
②如圖3,作軸于點,軸于點,直線與雙曲線有唯一公共點時,的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖像經(jīng)過點(2,-3).
(1)求這個函數(shù)的表達式.
(2)點(-1,6),(3,2)是否在這個函數(shù)的圖像上?
(3)這個函數(shù)的圖像位于哪些象限?函數(shù)值y隨自變量的增大如何變化?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②b2﹣4ac>0,③a﹣b+c<0,④c=1,⑤當x>﹣1時,y>0.其中正確結(jié)論的個數(shù)是( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線OA與反比例函數(shù)的圖象交于點A(3,3),向下平移直線OA,與反比例函數(shù)的圖象交于點B(6,m)與y軸交于點C,
(1)求直線BC的解析式;
(2)求經(jīng)過A、B、C三點的二次函數(shù)的解析式;
(3)設(shè)經(jīng)過A、B、C三點的二次函數(shù)圖象的頂點為D,對稱軸與x軸的交點為E.
問:在二次函數(shù)的對稱軸上是否存在一點P,使以O、E、P為頂點的三角形與△BCD相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,頂點為A的拋物線與x軸交于B、C兩點,與y軸交于點D,已知A(1,4),B(3,0).
(1)求拋物線對應的二次函數(shù)表達式;
(2)探究:如圖1,連接OA,作DE∥OA交BA的延長線于點E,連接OE交AD于點F,M是BE的中點,則OM是否將四邊形OBAD分成面積相等的兩部分?請說明理由;
(3)應用:如圖2,P(m,n)是拋物線在第四象限的圖象上的點,且m+n=﹣1,連接PA、PC,在線段PC上確定一點M,使AN平分四邊形ADCP的面積,求點N的坐標.提示:若點A、B的坐標分別為(x1,y1)、(x2,y2),則線段AB的中點坐標為(,).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在不透明的箱子中,裝有紅、白、黑各一個球,它們除了顏色之外,沒有其他區(qū)別。
(1)隨機地從箱子里取出一個球,則取出紅球的概率是多少?
(2)隨機地從箱子里取出1個球,然后放回,再搖勻取出第二個球,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求兩次取出相同顏色球的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.
(1)求拋物線的解析式;
(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;
(3)設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com