【題目】△ABC的兩條中線AD、BE交于點F,連接CF,若△ABC的面積為24,則△ABF的面積為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】由中線得:SABD=SADCSABD=SABE,由已知SABC=24,得出ABEABD的面積為12,根據(jù)等式性質(zhì)可知SAEF=SBDF,結(jié)合中點得:SAEF=SEFC=SDFC=SADC,相當于把ADC的面積平均分成三份,每份為4,由此可得SABF=SABD-SBDF

AD是中線,

SABD=SADC=SABC,

SABC=24,

SABD=SADC=×24=12,

同理SABE=12,

SABD=SABE,

SABD-SABF=SABE-SABF,

SAEF=SBDF

D是中點,

SBDF=SDFC

同理SAEF=SEFC,

SAEF=SEFC=SDFC=SADC=×12=4,

SABF=SABD-SBDF=12-4=8,

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,∠221,點Cx軸正半軸上的一動點.

1)求∠1的度數(shù);

2)若OFAC,OEAB,求證:∠EOF=∠EAF;

3)點C在運動中,若∠1=∠ACO,試判斷ABAC有怎樣的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:

(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控手段達到節(jié)水的目的.該市自來水收費價格見價目表.

若某戶居民月份用水,則應(yīng)收水費:元.

1)若該戶居民月份用水,則應(yīng)收水費______元;

2)若該戶居民月份共用水月份用水量超過月份),共交水費元,則該戶居民,月份各用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,PM、QN分別是ABAC的垂直平分線,∠BAC100°那么∠PAQ等于(  )

A. 50° B. 40° C. 30° D. 20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人分兩次在同一糧店內(nèi)買糧食,兩次的單價不同,甲每次購糧100千克,乙每次購糧100元.若規(guī)定:誰兩次購糧的平均單價低,誰的購糧方式就合算.那么這兩次購糧(  )

A. 甲合算 B. 乙合算

C. 甲、乙一樣 D. 要看兩次的價格情況

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[探究]如圖,∠AFH和∠CHF的平分線交于點OEG經(jīng)過點O且平行于FH,分別與AB,CD交于點EG.

(1)若∠AFH=60°,∠CHF=50°,則∠EOF= °,∠ FOH= °

(2)若∠AFH+CHF= 100°,求∠FOH的度數(shù).

(3)當∠FOH=_____ ° ,AB//CD.

[拓展]如圖,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與ABCD交于點E、G.若∠AFH+CHF=a,求∠FOH的度數(shù). (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中A、BC.將其平移后得到,A,B的對應(yīng)點是,,C的對應(yīng)點的坐標是.

(1)在平面直角坐標系中畫出ABC

(2)寫出點的坐標是_____________,坐標是___________;

(3)此次平移也可看作________平移了____________個單位長度,再向_______平移了______個單位長度得到△ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將邊長為2的正方形OABC如圖放置,O為原點.若∠α=15°,則點B的坐標為

查看答案和解析>>

同步練習冊答案