【題目】(8分)如圖,O的內(nèi)接四邊形ABCD兩組對邊的延長線分別交于點E、F

(1)若E=F時,求證:ADC=ABC;

(2)若E=F=42°時,求A的度數(shù);

(3)若E=α,F=β,且α≠β請你用含有α、β的代數(shù)式表示A的大小

【答案】(1)見解析;(2)48°;(3)A=90°﹣

【解析】

試題(1)根據(jù)外角的性質(zhì)即可得到結論;

(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)和等量代換即可求得結果;

(3)連結EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得ECD=A,再根據(jù)三角形外角性質(zhì)得ECD=1+2,則A=1+2,然后根據(jù)三角形內(nèi)角和定理有A+1+2+E+F=180°,即2A+α+β=180°,再解方程即可

試題解析:解:(1)E=F,

∵∠DCE=BCF,

∴∠ADC=E+DCE,ABC=F+BCF,

∴∠ADC=ABC;

(2)由(1)知ADC=ABC,

∵∠EDC=ABC,

∴∠EDC=ADC,

∴∠ADC=90°,

∴∠A=90°﹣42°=48°;

(3)連結EF,如圖,

四邊形ABCD為圓的內(nèi)接四邊形,

∴∠ECD=A,

∵∠ECD=1+2,

∴∠A=1+2,

∵∠A+1+2+E+F=180°,

2A+α+β=180°,

∴∠A=90°﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把ABC繞原點順時針旋轉90°,得到A1B1C1.再把A1B1C1向左平移2個單位,向下平移5個單位得到A2B2C2

1)畫出A1B1C1A2B2C2

2)直接寫出點B1、B2坐標.

3Pa,b)是ABCAC邊上任意一點,ABC經(jīng)旋轉平移后P對應的點分別為P1、P2,請直接寫出點P1、P2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O 的直徑為 4,AB 是⊙O 的弦,∠AOB=120°,點 P 在⊙O 上,若點 P到直線 AB 的距離為 1,則∠PAB 的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形 ABCD 內(nèi)接于⊙O,且已知∠ADC=120°;請僅用無刻度直尺作出一個30°的圓周角.要求:

(1)保留作圖痕跡,寫出作法,寫明答案;

(2)證明你的作法的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:

(1)出租車的速度為100千米/時;

(2)客車的速度為60千米/時;

(3)兩車相遇時,客車行駛了3.75時;

(4)相遇時,出租車離甲地的路程為225千米.

其中正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案