【題目】一個(gè)棱長為10分米的正方體,體積是( )立方分米.

A. 109B. 106C. 103D. 1027

【答案】C

【解析】

根據(jù)題意,可利用正方體的體積公式棱長乘棱長乘棱長列式解答即可.

10×10×10=1000(立方分米).

故選:C..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于點(diǎn)、,與軸交于點(diǎn).

(1)求二次函數(shù)的表達(dá)式;

(2)設(shè)上述拋物線的對稱軸軸交于點(diǎn),過點(diǎn), 為線段

上一點(diǎn), 軸負(fù)半軸上一點(diǎn),以、、為頂點(diǎn)的三角形與相似;

滿足條件的點(diǎn)有且只有一個(gè)時(shí),求的取值范圍;

②若滿足條件的點(diǎn)有且只有兩個(gè),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各式分解因式:

1x(x-y)2-2(y-x)2 2(x2+4)2-16x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)PRtABC斜邊AB上一動點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F,Q為斜邊AB的中點(diǎn).

(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AEBF的位置關(guān)系是________,QEQF的數(shù)量關(guān)系是________.

(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QEQF的數(shù)量關(guān)系,并給予證明.

(3)如圖3,當(dāng)點(diǎn)P在線段BA(AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)購物無疑已被越來越多的人所接受,對人們生活的影響不斷加深.李先生是淘寶店主之一,進(jìn)了一批服裝,每件成本為50元,如果按每件60元出售,可銷售800件.如果每件提價(jià)1元出售,其銷售量將減少20件.如果李先生的網(wǎng)店銷售這批服裝要獲利12000元,并且投入盡量少,那么這種服裝售價(jià)應(yīng)為多少元? 該網(wǎng)店進(jìn)多少件這種服裝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一個(gè)長方體正好分割成兩個(gè)完全相同的正方體,若分割后的正方體的棱長為4厘米,則分割后比分割前表面積增加了________平方厘米,總體積增加了________立方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一節(jié)數(shù)學(xué)實(shí)踐活動課上,老師拿出三個(gè)邊長都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問題提出后,同學(xué)們經(jīng)過討論,大家覺得本題實(shí)際上就是求將三個(gè)正方形硬紙板無重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如圖所示:

(1)通過計(jì)算(結(jié)果保留根號與π).

(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為

(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請你畫出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時(shí)圓形硬紙板的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果xy,且(a-1x<(a-1y,那么a的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(1)、(2)兩班人數(shù)相同,在一次數(shù)學(xué)考試中,平均分相同,但(1)班的成績比(2)班整齊,若(1),(2)班的方差分別為S21,S22,則(

A. S21>S22 B. S21<S22 C. S21=S22 D. S1>S2

查看答案和解析>>

同步練習(xí)冊答案