【題目】在“愛滿揚州”慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成統(tǒng)計圖.
(1)這50名同學捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)求這50名同學捐款的平均數(shù);
(3)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).
【答案】(1)15,15;(2)13(元);(3)7800(元).
【解析】試題分析:(1)根據(jù)眾數(shù)的定義即出現(xiàn)次數(shù)最多的數(shù)據(jù)進而得出即可,再利用中位數(shù)的定義得出即可;
(2)利用條形統(tǒng)計圖得出各組頻數(shù),再根據(jù)加權(quán)平均數(shù)的公式計算即可;
(3)利用樣本估計總體的思想,用總數(shù)乘以捐款平均數(shù)即可得到捐款總數(shù).
解:(1)數(shù)據(jù)15元出現(xiàn)了20次,出現(xiàn)次數(shù)最多,所以眾數(shù)是15元;
數(shù)據(jù)總數(shù)為50,所以中位數(shù)是第25、26位數(shù)的平均數(shù),即(15+15)÷2=15(元).
故答案為15,15;
(2)50名同學捐款的平均數(shù)=(5×8+10×14+15×20+20×6+25×2)÷50=13(元);
(3)估計這個中學的捐款總數(shù)=600×13=7800(元).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點D是AB邊上的一點,DM⊥AB,且DM=AC,過點M作ME∥BC交AB于點E,
(1)試說明△ABC與△MED全等;
(2)若∠M=35°,求∠B的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】密碼鎖有三個轉(zhuǎn)輪,每個轉(zhuǎn)輪上有十個數(shù)字:0,1,2,…9.小黃同學是9月份中旬出生,用生日“月份+日期”設(shè)置密碼:9××
小張同學要破解其密碼:
(1)第一個轉(zhuǎn)輪設(shè)置的數(shù)字是9,第二個轉(zhuǎn)輪設(shè)置的數(shù)字可能是 .
(2)請你幫小張同學列舉出所有可能的密碼,并求密碼數(shù)能被3整除的概率;
(3)小張同學是6月份出生,根據(jù)(1)(2)的規(guī)律,請你推算用小張生日設(shè)置的密碼的所有可能個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點,△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
當AP=AD時(如圖2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣S△ABD﹣S△CDA,
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)當AP=AD時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系式并證明;
(2)當AP=AD時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(3)一般地,當AP=AD(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系為: ;
(4)當AP=AD(0≤≤1)時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關(guān)系是S1_____S2;(填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=4cm,BC=3cm,點P由B出發(fā)沿BA的方向向點A勻速運動,速度為1cm/s,同時點Q由A出發(fā)沿AC的方向向點C勻速運動,速度為2cm/s,連接PQ,設(shè)運動的時間為t(s),其中0<t<2,解答下列問題:
(1)當t為何值時,以P、Q、A為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,線段PQ將△ABC的面積分成1:2兩部分?若存在,求出此時的t,若不存在,請說明理由;
(3)點P、Q在運動的過程中,△CPQ能否成為等腰三角形?若能,請求出此時t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD
(3)畫出BC邊上的高線AE
(4)點為方格紙上的格點(異于點),若,則圖中的格點共有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com