【題目】如圖,雙曲線y=(x>0)經過△OAB的頂點A和OB的中點C,AB∥x軸,點A的坐標為(2,3),BE⊥x軸,垂足為E.
(1)確定k的值: ;
(2)計算△OAB的面積;
(3)若點D(3,b)在雙曲線y=(x>0)上,直線AD的解析式為y=mx+n,請直接寫出不等式mx+n<的解集: .
【答案】(1)6;(2)9;(3)0<x<2或x>3
【解析】
(1)將點代入求值即可.
(2) 過點C作CF⊥x軸,垂足為F,可得 △OCF∽△OBE,將點坐標代入求出AB的長,利用面積公式即可算出.
(3)將點D代入求出b的值,再根據不等式解出即可.
(1)將點A(2,3)代入y=(x>0)得:k=6,
故答案為6;
(2)過點C作CF⊥x軸,垂足為F,
∴CF∥BE,
∴△OCF∽△OBE,
∵C為OB的中點,即=,
∴CF=BE=,
∵C在雙曲線y=上,
∴C(4,),
∴OF=4,OE=8,
∴AB=8﹣2=6,
得:S△AOB=×6×3=9;
(3)將D(3,b)代入反比例解析式y=,
得:b==2,
∴點D坐標為(3,2),
∴不等式mx+n<的解集是0<x<2或x>3,
故答案為0<x<2或x>3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,過⊙T外一點P引它的兩條切線,切點分別為M,N,若,則稱P為⊙T的環(huán)繞點.
(1)當⊙O半徑為1時,
①在中,⊙O的環(huán)繞點是_________;
②直線y=2x+b與x軸交于點A,y軸交于點B,若線段AB上存在⊙O的環(huán)繞點,求b的取值范圍;
(2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構成圖形H,若在圖形H上存在⊙T的環(huán)繞點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點H為BC中點,連接OH.
(1)如圖1所示,若AB=8,CD=2,求OH的長;
(2)將△COD繞點O旋轉一定的角度到圖2所示位置時,線段OH與AD有怎樣的數(shù)量和位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+3.
(1)求拋物線的表達式;
(2)在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;
(3)在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E,F分別是線段CD和線段BA延長線上的動點,沿直線EF折疊使點D的對應點D′落在BC上,連接AD′,DD′,當△ADD′是以DD′為腰的等腰三角形時,DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5與x軸交于A(﹣1,0),B(5,0)兩點(點A在點B的左側),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D是第一象限內拋物線上的一個動點(與點C,B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連接BD,直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標;若不能,請說明理由.
(3)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,四邊形ABCD與四邊形CEFG都是矩形,點E,G分別在邊CD,CB上,點F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG繞點C順時針旋轉到圖②的位置,P為AF,BG的交點,連接CP
(Ⅰ)求的值;
(Ⅱ)判斷CP與AF的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點每個小方格的頂點叫格點,其中,,.
外接圓的圓心坐標是______;
外接圓的半徑是______;
已知與點D、E、F都是格點成位似圖形,則位似中心M的坐標是______;
請在網格圖中的空白處畫一個格點,使∽,且相似比為:1.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com