【題目】如圖,P是半圓O中所對弦AB上一動點,過點P作PM⊥AB交于點M,作射線PN交于點N,使得∠NPB=45°,連接MN.已知AB=6cm,設(shè)A,P兩點間的距離為xcm,M,N兩點間的距離為ycm.(當點P與點A重合時,點M也與點A重合,當點P與點B重合時,y的值為0)
小超根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小超的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,得到了y與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 4.2 | 2.9 | 2.6 | 2.0 | 1.6 | 0 |
(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當MN=2AP時,AP的長度約為 cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,a)和B兩點,與x軸交于點C.
(1)求反比例函數(shù)的解析式及點A的坐標;
(2)若點P為x軸上一點,且滿足△ACP是等腰三角形,請直接寫出符合條件的所有點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于點和實數(shù),給出如下定義:當時,以點為圓心,為半徑的圓,稱為點的倍相關(guān)圓.
例如,在如圖1中,點的1倍相關(guān)圓為以點為圓心,2為半徑的圓.
(1)在點中,存在1倍相關(guān)圓的點是________,該點的1倍相關(guān)圓半徑為________.
(2)如圖2,若是軸正半軸上的動點,點在第一象限內(nèi),且滿足,判斷直線與點的倍相關(guān)圓的位置關(guān)系,并證明.
(3)如圖3,已知點,反比例函數(shù)的圖象經(jīng)過點,直線與直線關(guān)于軸對稱.
①若點在直線上,則點的3倍相關(guān)圓的半徑為________.
②點在直線上,點的倍相關(guān)圓的半徑為,若點在運動過程中,以點為圓心,為半徑的圓與反比例函數(shù)的圖象最多有兩個公共點,直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(℃),但美、英等國的天氣預報仍然使用華氏溫度(℉),兩種計量之間有如下的對應(yīng)表:
攝氏溫度(℃) | 0 | 10 | 20 | 30 | 40 | 50 |
華氏溫度(℉) | 32 | 50 | 68 | 86 | 104 | 122 |
由上表可以推斷出,華氏0度對應(yīng)的攝氏溫度是_____℃,若某一溫度時華氏溫度的值與對應(yīng)的攝氏溫度的值相等,則此溫度為_____℃.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法正確的個數(shù)是( )
①拋物線與x軸的一個交點為(﹣2,0);
②拋物線與y軸的交點為(0,6);
③拋物線的對稱軸是x=1;
④在對稱軸左側(cè)y隨x增大而減小;
⑤當y>0,則x的取值范圍是-2<x<3
A.①②③B.②③④C.②④⑤D.①②⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地,我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標系中,O為原點,A(4,0),B(﹣4,0),D是y軸上的一個動點,∠ADC=90°(A、D、C按順時針方向排列),BC與經(jīng)過A、B、D三點的⊙M交于點E,DE平分∠ADC,連結(jié)AE,BD.顯然△DCE、△DEF、△DAE是半直角三角形.
(1)求證:△ABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點D的坐標為(0,8),求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A,B分別在射線OM,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com