【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.

【答案】①證明:連接OD. ∵OA=OD,
∴∠A=∠ADO.
∵AD∥OC,
∴∠A=∠BOC,∠ADO=∠COD,
∴∠BOC=∠COD.
∵在△OBC與△ODC中,

∴△OBC≌△ODC(SAS),
∴∠OBC=∠ODC,
又∵BC是⊙O的切線,
∴∠OBC=90°,
∴∠ODC=90°,
∴DC是⊙O的切線;
②解:連接BD.
∵在△ADB與△ODC中, ,
∴△ADB∽△ODC,
∴AD:OD=AB:OC,
∴ADOC=ODAB=r2r=2r2 , 即2r2=8,
故r=2.

【解析】①連接OD,要證明DC是⊙O的切線,只要證明∠ODC=90°即可.根據(jù)題意,可證△OCD≌△OCB,即可得∠CDO=∠CBO=90°,由此可證DC是⊙O的切線;②連接BD,OD.先根據(jù)兩角對應相等的兩三角形相似證明△ADB∽△ODC,再根據(jù)相似三角形對應邊成比例即可得到r的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,將△ABC繞點B按逆時針方向旋轉(zhuǎn)30°后得到△A1BC1 , 則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,已知∠B∠C的平分線相交于點F,經(jīng)過點FDE//BC,交ABD,交AC于點E,若BD+CE=9,則線段DE的長為( )

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個動點,FAB邊上一點,∠AEF=30°.設DE=x,圖中某條線段長為y,yx滿足的函數(shù)關系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點MCD邊上,點N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點E,連接BE,AC,交于F點.

(1) ①依題意補全圖形;

②求證:BEAC.

(2)請?zhí)骄烤段BE,AD,CN所滿足的等量關系,并證明你的結(jié)論.

(3)設AB=1,若點M沿著線段CD從點C運動到點D,則在該運動過程中,線段EN所掃過的面積為______________(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(1)4x﹣5=3x+2

(2)

(3)2x﹣3(6﹣x)=3x﹣4(5﹣x)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點E、F分別在AB、BC上,DEF為等腰直角三角形,DEF=90°,AD+CD=10,AE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七中育才學校排球活動月即將開始,其中有一項為墊球比賽,體育組為了了解七年級學生的訓練情況,隨機抽取了七年級部分學生進行1分鐘墊球測試,并將這些學生的測試成績(即1分鐘的個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應等級,具體為:測試成績在60~90范圍內(nèi)的記為D級,90~120范圍內(nèi)的記為C級,120~150范圍內(nèi)的記為B級,150~180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應的圓心角為90°,請根據(jù)圖中的信息解答下列問題:

(1)在扇形統(tǒng)計圖中,A級所占百分比為   

(2)在這次測試中,一共抽取了   名學生,并補全頻數(shù)分布直方圖;

(3)在(2)中的基礎上,在扇形統(tǒng)計圖中,求D級對應的圓心角的度數(shù);

(4)A,B,C,D等級的平均成績分別為165、135、105、75個,你能估算出學校七年級同學的平均水平嗎?若能,請計算出來.(保留準確值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

同步練習冊答案