【題目】(1)問題:如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D為BC邊上一點(不與點B,C重合)將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC.求證:△ABD≌△ACE;
(2)探索:如圖2,在Rt△ABC與Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC邊上,試探索線段BD2、CD2、DE2之間滿足的等量關(guān)系,并證明你的結(jié)論;
(3)應(yīng)用:如圖3,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=6,CD=2,求AD的長.
【答案】(1)見解析;(2)2AD2=BD2+CD2,理由見解析;(3)4.
【解析】
(1)先利用等腰直角三角形的性質(zhì)推出∠BAD=∠CAE,然后用邊角邊證明△BAD≌△CAE即可;
(2)連接EC,先用邊角邊證明△BAD≌△CAE,得到∠B=∠ACE=45°,進而推出∠BCE=90°,由勾股定理可得DE2=CE2+CD2,然后再由DE=AD可得出結(jié)論;
(3)將AD繞點A逆時針旋轉(zhuǎn)90°至AG,連接CG、DG,易得△DAG是等腰直角三角形,同理可證△BAD≌△CAG,然后推出DG=4,即可得結(jié)果.
解:(1)在Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
(2)結(jié)論:2AD2=BD2+CD2,
理由是:如圖2中,連接EC.
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
∵,
∵△BAD≌△CAE(SAS),
∴BD=CE,∠B=∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=45°+45°=90°,
∴DE2=CE2+CD2,
∵AD=AE,∠DAE=90°,
∴DE=AD,
∴2AD2=BD2+CD2;
(3)如圖3,將AD繞點A逆時針旋轉(zhuǎn)90°至AG,連接CG、DG,
則△DAG是等腰直角三角形,
∴∠ADG=45°,
∵∠ADC=45°,
∴∠GDC=90°,
同理得:△BAD≌△CAG,
∴CG=BD=6,
Rt△CGD中,∵CD=2,
∴DG=4,
∵△DAG是等腰直角三角形,
∴AD=AG=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①作∠BAC的平分線AM交BC于點D;
②作邊AB的垂直平分線EF,EF與AM相交于點P;
③連接PB,PC.
請你觀察圖形解答下列問題:
(1)線段PA,PB,PC之間的數(shù)量關(guān)系是 ;
(2)若∠ABC=70°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山的高度,先在山腳的一點測得山頂的仰角為,再沿坡角為的山坡走米到點,又測得山頂的仰角是,則山高________.(帶根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D為EC中點.
(1)求∠CAE的度數(shù);
(2)求證:△ADE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù)與,這兩個二次函數(shù)的圖象中的一條與軸交于,兩個不同的點.
試判斷哪個二次函數(shù)的圖象經(jīng)過,兩點;
若點坐標(biāo)為,試求點坐標(biāo);
在的條件下,對于經(jīng)過,兩點的二次函數(shù),當(dāng)取何值時,的值隨值的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對稱的;
(2)寫出點A1,C1的坐標(biāo)(直接寫答案);A1 _________,C1 _________,
(3)的面積為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的頂角為36°,則這個三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。
(1)如圖1,寫出圖中所有的黃金三角形,并證明;
(2)若 M為線段 BC上的點,過 M作直線MH⊥AD于 H,分別交直線 AB,AC與點N,E,如圖 2,試寫出線段 BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點的對應(yīng)點A′的坐標(biāo)為( 。
A. (﹣4,﹣2﹣) B. (﹣4,﹣2+) C. (﹣2,﹣2+) D. (﹣2,﹣2﹣)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com