【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長(zhǎng)為( )
A. B. C. D.
【答案】C
【解析】
試題分析:先根據(jù)勾股定理求出AB的長(zhǎng),過(guò)C作CM⊥AB,交AB于點(diǎn)M,由垂徑定理可知M為AD的中點(diǎn),由三角形的面積可求出CM的長(zhǎng),在Rt△ACM中,根據(jù)勾股定理可求出AM的長(zhǎng),進(jìn)而可得出結(jié)論.
解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB===5,
過(guò)C作CM⊥AB,交AB于點(diǎn)M,如圖所示,
∵CM⊥AB,
∴M為AD的中點(diǎn),
∵S△ABC=ACBC=ABCM,且AC=3,BC=4,AB=5,
∴CM=,
在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AD=2AM=.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚島是我國(guó)渤海海峽上的一顆明珠,漁產(chǎn)豐富.一天某漁船離開(kāi)港口前往該海域捕魚.捕撈一段時(shí)間后,發(fā)現(xiàn)一外國(guó)艦艇進(jìn)入我國(guó)水域向釣魚島駛來(lái),漁船向漁政部門報(bào)告,并立即返航.漁政船接到報(bào)告后,立即從該港口出發(fā)趕往釣魚島.下圖是漁船及漁政船與港口的距離s和漁船離開(kāi)港口的時(shí)間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)
(1)直接寫出漁船離港口的距離s和它離開(kāi)港口的時(shí)間t的函數(shù)關(guān)系式.]
(2)求漁船和漁政船相遇時(shí),兩船與釣魚島的距離.
(3)在漁政船駛往釣魚島的過(guò)程中,求漁船從港口出發(fā)經(jīng)過(guò)多長(zhǎng)時(shí)間與漁政船相距30海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.3x2﹣4x2=﹣1 B.3x+x=3x2
C.4xx=4x2 D.﹣4x6÷2x2=﹣2x3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,已知A(3,4),B(3,﹣1),C(﹣3,﹣2),D(﹣2,3)
(1)在圖上畫出四邊形ABCD,并求四邊形ABCD的面積;
(2)若P為四邊形ABCD形內(nèi)一點(diǎn),已知P坐標(biāo)為(﹣1,1),將四邊形ABCD通過(guò)平移后,P的坐標(biāo)變?yōu)椋?/span>2,﹣2),根據(jù)平移的規(guī)則,請(qǐng)直接寫出四邊形ABCD平移后的四個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南山植物園中現(xiàn)有A、B兩個(gè)園區(qū),已知A園區(qū)為長(zhǎng)方形,長(zhǎng)為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長(zhǎng)為(x+3y)米.
(1)請(qǐng)用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡(jiǎn);
(2)現(xiàn)根據(jù)實(shí)際需要對(duì)A園區(qū)進(jìn)行整改,長(zhǎng)增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長(zhǎng)比寬多350米,且整改后兩園區(qū)的周長(zhǎng)之和為980米.
①求x、y的值;
②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費(fèi)用與吸引游客的收益如表:
求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一副三角板的兩個(gè)直角頂點(diǎn)重合在一起.
(1)若∠EON=140°,求∠MOF的度數(shù);
(2)比較∠EOM與∠FON的大小,并寫出理由;
(3)求∠EON+∠MOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正數(shù)x的兩個(gè)平方根分別是2a﹣1與﹣a+2,求a的值和這個(gè)正數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,P是∠ABC內(nèi)一點(diǎn),請(qǐng)過(guò)點(diǎn)P畫射線PD,使PD∥BC;過(guò)點(diǎn)P畫直線PE∥BA,交BC于點(diǎn)E.請(qǐng)畫圖并通過(guò)觀察思考后你發(fā)現(xiàn)∠ABC與∠DPE的大小關(guān)系是 ,并說(shuō)明理由.
(2)如圖2,直線a,b所成的角跑到畫板外面去了,為了測(cè)量這兩條直線所成的角的度數(shù),請(qǐng)畫圖并簡(jiǎn)單地寫出你的方法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com