精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C﹣D﹣E上移動,若點C、D、E的坐標分別為(﹣1,4)、(3,4)、(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為( 。

A.1
B.2
C.3
D.4

【答案】B
【解析】解:由圖知:當點B的橫坐標為1時,拋物線頂點取C(﹣1,4),設該拋物線的解析式為:y=a(x+1)2+4,代入點B坐標,得:
0=a(1+1)2+4,a=﹣1,
即:B點橫坐標取最小值時,拋物線的解析式為:y=﹣(x+1)2+4.
當A點橫坐標取最大值時,拋物線頂點應取E(3,1),則此時拋物線的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即與x軸的交點為(2,0)或(4,0)(舍去),
∴點A的橫坐標的最大值為2.
故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】把下列各數填在相應的集合內:

100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,,﹣,2.010010001…,

正分數集合:{    …}

整數集合:{   …}

負有理數集合:{    …}

非正整數集合;{   …}

無理數集合:{    …}.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是直線AB上的一點,OC為任一射線,OD平分∠BOC,OE平分∠AOC.

(1)指出圖中∠AOD的補角和∠BOE的補角;

(2)若∠BOC=68°,求∠COD和∠EOC的度數;

(3)COD與∠EOC具有怎樣的數量關系?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察標志,從圖案看既是軸對稱圖形又是中心對稱圖形的有( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明想測量一棵樹的高度,他發(fā)現樹的影子恰好落在地面和一斜坡上,如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為30°,同一時刻,一根長為1米且垂直于地面放置的標桿在地面上的影長為2米,則樹的高度為( 。

A.(6+)米
B.12米
C.(4﹣2)米
D.10米

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?若能,請給出求解過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

(1) -26-(-15) (2)(+7)+(-4)-(-3)-14

(3)(-3)×÷(-2)×(-) (4)-(3-5)+32×(-3)

(5)(﹣++)÷ (6)- 32 -(﹣2)2+1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補充一個條件,則補充的條件不正確的是(
A.DE=DO
B.AB=AC
C.CD=DB
D.AC∥OD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正比例函數y=x的圖象與一次函數y=kx﹣k的圖象的交點坐標為A(m,2).

(1)求m的值和一次函數的解析式;

(2)設一次函數y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

(3)直接寫出使函數y=kx﹣k的值大于函數y=x的值的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案