【題目】如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點(diǎn)坐標(biāo)為A(m,2).

(1)求m的值和一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點(diǎn)B,求△AOB的面積;

(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

【答案】(1) m=2; y=2x﹣2;(2) 2;(3) x2.

【解析】試題分析:(1)先把Am,2)代入正比例函數(shù)解析式可計(jì)算出m=2,然后把A2,2)代入y=kx﹣k計(jì)算出k的值,從而得到一次函數(shù)解析式為y=2x﹣2

2)先確定B點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式計(jì)算;

3)觀察函數(shù)圖象得到當(dāng)x2時(shí),直線y=kx﹣k都在y=x的上方,即函數(shù)y=kx﹣k的值大于函數(shù)y=x的值.

試題解析:(1)把Am,2)代入y=xm=2,則點(diǎn)A的坐標(biāo)為(2,2),

A22)代入y=kx﹣k2k﹣k=2,解得k=2,

所以一次函數(shù)解析式為y=2x﹣2

2)把x=0代入y=2x﹣2y=﹣2,則B點(diǎn)坐標(biāo)為(0,﹣2),

所以SAOB=×2×2=2;

3)自變量x的取值范圍是x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C﹣D﹣E上移動,若點(diǎn)C、D、E的坐標(biāo)分別為(﹣1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一張矩形ABCD紙片按如圖方式折疊,使點(diǎn)A與點(diǎn)E重合,點(diǎn)C與點(diǎn)F重合(E、F兩點(diǎn)均在BD上),折痕分別為BH、DG.
(1)求證:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近兩年,國際市場黃金價(jià)格漲幅較大,中國交通銀行推出沃德金的理財(cái)產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價(jià)格的上漲中賺取利潤.上周五黃金的收盤價(jià)為285/克,下表是本周星期一至星期五黃金價(jià)格的變化情況.(注:星期一至星期五開市,星期六.星期日休市)

星期

收盤價(jià)的變化(與前一天收盤價(jià)比較)

+7

+5

+8

問:(1)本周星期三黃金的收盤價(jià)是多少?

(2)本周黃金收盤時(shí)的最高價(jià).最低價(jià)分別是多少?

(3)上周,小王以周五的收盤價(jià)285/克買入黃金1000克,已知買入與賣出時(shí)均需支付成交金額的千分之五的交易費(fèi),賣出黃金時(shí)需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤價(jià)全部賣出黃金1000克,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算: +( 0+|﹣1|;
(2)先化簡,再求值:(x+2)2+x(2﹣x),其中x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請猜想1+3+5+7+9+…+19=

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計(jì)算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個(gè)單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,直線y=x向下平移2個(gè)單位后和直線y=kx+b(k≠0)重合,直線y=kx+b(k≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B .

(1)請直接寫出直線y=kx+b(k≠0)的表達(dá)式和點(diǎn)B的坐標(biāo);

(2)求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案