【題目】某校要從甲、乙兩個跳遠運動員中選一人參加一項比賽,在最近的10次選撥賽中,他們的成績單位:如下:

甲:585,596,610,598,612,597,604,600,613,601

乙:613,618,580,574,618,593,585,590,598,624

分別求甲、乙的平均成績;

分別求甲、乙這十次成績的方差;

這兩名運動員的運動成績各有什么特點?歷屆比賽成績表明,成績達到就很可能奪冠你認為應選誰參加比賽?

【答案】(1)(2),(3)應該選擇甲參加比賽

【解析】

根據(jù)平均數(shù)的公式進行計算即可.

根據(jù)方差的計算公式:,求解即可.

從甲和乙的平均成績與方差描述成績特點,再從10次成績中達到的次數(shù)確定選拔人員.

,;

知,甲平均成績高且比乙的成績穩(wěn)定,

10次成績中有9次成績達到,而乙10次成績中只有5次達到,而且甲的成績穩(wěn)定,

應該選擇甲參加比賽.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設DA=2.

(1)求線段EC的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知直線BC//ED

1)若點A在直線DE上,且∠B=44°,∠EAC=30°,求∠BAC的度數(shù);

2)若點GBC的延長線上,求證:∠ACG =BAC+B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育課上,小強和小明進行百米賽跑,小明比小強跑得快,如果兩人同時跑,肯定小明贏,現(xiàn)在小明讓小強先跑若干米后再追趕他,圖中的射線a、b分別表示兩人跑的路程與小明追趕時間之間的關(guān)系,根據(jù)圖象回答下列問題:

小明讓小強先跑出______米,小明才開始跑;

小明和小強賽跑的速度分別為______,______;

求出圖中小強跑步路程s和時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,,

為邊BC上一點,將沿直線AP翻折至的位置B落在點E

如圖1,當點E落在CD邊上時,利用尺規(guī)作圖,在圖1中作出滿足條件的圖形不寫作法,保留作圖痕跡,用2B鉛筆加粗加黑并直接寫出此時______;

如圖2,若點PBC邊的中點,連接CE,則CEAP有何位置關(guān)系?請說明理由;

Q為射線DC上的一個動點,將沿AQ翻折,點D恰好落在直線BQ上的點處,則______;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,邊AB的垂直平分線交邊BC于點D,邊AC的垂直平分線交邊BC于點E,連結(jié)AD,AE,則的度數(shù)為______用含的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.

(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當點E滑動到某處時,點F恰好落在拋物線y=﹣x2+x+1上,求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發(fā)價和零售價如表所示:

品名

獼猴桃

芒果

批發(fā)價千克

20

40

零售價千克

26

50

他購進的獼猴桃和芒果各多少千克?

如果獼猴桃和芒果全部賣完,他能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:Rt△ABC的斜邊長為5,斜邊上的高為2,將這個直角三角形放置在平面直角坐標系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點C落在y軸正半軸上(如圖1).

(1)求線段OA,OB的長和經(jīng)過點A,B,C的拋物線的關(guān)系式.
(2)如圖2,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點(其中m>0,n>0),連接DP交BC于點E.
①當△BDE是等腰三角形時,直接寫出此時點E的坐標.
②又連接CD、CP(如圖3),△CDP是否有最大面積?若有,求出△CDP的最大面積和此時點P的坐標;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案