【題目】數(shù)、b在數(shù)軸上的位置如圖所示,
(1) a+b 0 , a-b 0; (填“>”、“=”或“<”)
(2) 化簡:|a|-|b|+|a-b|
(3)在數(shù)軸上表示a+b與a-b;并把、b、0、a+b、a-b按從小到的順序用“<”連接起來。
【答案】(1)a+b<0,a-b>0;(2)2a;
(3)a+b與a-b在數(shù)軸上的位置見解析;b<a+b <0<<a-b.
【解析】
(1)根據(jù)數(shù)軸得出b<0<a,|b|>|a|,進行判斷即可解答;
(2)由 b<0<a,a-b>0可化簡絕對值,然后合并同類項即可;
(3)在數(shù)軸上表示出來后根據(jù)各數(shù)在數(shù)軸上的位置即可判斷各數(shù)的大小關(guān)系.
解:(1)由數(shù)軸得出b<0<a,|b|>|a|,
∴a+b<0,a-b>0,
(2)∵b<0<a,a-b>0,
∴|a|-|b|+|a-b|
=a+b+a-b
=2a
(3)a+b與a-b在數(shù)軸上的位置如圖所示,
由數(shù)軸可知:b<a+b <0<<a-b.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,,,過點的直線交矩形的邊于點,且點不與點、重合,過點作,交軸于點,交軸于點.
(1)若為等腰直角三角形.
①求直線的函數(shù)解析式;
②在軸上另有一點的坐標為,請在直線和軸上分別找一點、,使 的周長最小,并求出此時點的坐標和周長的最小值.
(2)如圖2,過點作交軸于點,若以、、、為頂點的四邊形是平行四邊形,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,∠AOB=120°,射線OP以1°/秒的速度從OA出發(fā),射線OQ以2°/秒的速度從OB出發(fā),兩條射線同時開始逆時針轉(zhuǎn)動t秒.
(1)當t=10秒時,求∠POQ的度數(shù).
(2)如圖2,在射線OQ、OP轉(zhuǎn)動過程中,射線OE始終在∠BOQ內(nèi)部,且OF平分∠AOP,若∠EOF=120°,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,并且滿足.一動點從點出發(fā),在線段上以每秒個單位長度的速度向點移動;動點從點出發(fā)在線段上以每秒個單位長度的速度向點運動,點分別從點同時出發(fā),當點運動到點時,點隨之停止運動.設(shè)運動時間為(秒)
(1)求兩點的坐標;
(2)當為何值時,四邊形是平行四邊形?并求出此時兩點的坐標.
(3)當為何值時,是以為腰的等腰三角形?并求出此時兩點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E | F |
上學方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計圖中,求E類對應(yīng)的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.
(3)若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 ,已知B C=90 ,AEED,ABCE ,點F是AD的中點.說明EF與AD垂直的理由.
解:因為 AEED (已知),
所以AED=90 (垂直的意義).
因為AECBBAE ( ),
即AEDDECBBAE .
又因為B=90 (已知),
所以BAECED (等式性質(zhì)).
在△ ABE 與△ ECD 中,
BC(已知),ABEC(已知),BAECED,
所以△ ABE≌△ECD ( ),
得 ( 全等三角形的對應(yīng)邊相等),
所以△AED 是等腰三角形.
因為 (已知),
所以 EFAD ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在BC上,求證:AB=AC;
(2)如圖2,若點O在△ABC的內(nèi)部,求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 ,在平面直角坐標系中,直線AB∥ x軸,線段AB與 y 軸交于點M ,已知點 A的坐標是(-2,3), BM4,點C 與點 B 關(guān)于 x 軸對稱.
(1)在圖中描出點C ,并直接寫出點 B 和點C 的坐標:B ,C ;
(2)聯(lián)結(jié) AC 、BC ,AC 與 x 軸交于點 D ,試判斷△ABC 的形狀,并直接寫出點 D的坐標;
(3)在坐標平面內(nèi), x 軸的下方,是否存在這樣的點 P ,使得△ACP 是等腰直角三角形?如果存在,直接寫出點P 的坐標;如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種蔬菜千克,不加工直接出售每千克可賣元;如果經(jīng)過加工重量減少了20%,價格增加了40%,回答下列問題.
(1)千克這種蔬菜不加工直接出售可賣_______元.
(2)千克這種蔬菜加工后可賣多少元.
(3)現(xiàn)有這種蔬菜800千克,不加工直接出售每千克可賣1.5元,那么加工后原800千克這種蔬菜可賣多少元?比加工前多賣多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com