【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個結(jié)論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

【答案】B

【解析】

試題解析:點(diǎn)A是劣弧的中點(diǎn),OA過圓心,

∴OA⊥BC,故正確;

∵∠D=30°,

∴∠ABC=∠D=30°

∴∠AOB=60°,

點(diǎn)A是劣弧的中點(diǎn),

∴BC=2CE,

∵OA=OB,

∴OA=OB=AB=6cm

∴BE=ABcos30°=6×=3cm,

∴BC=2BE=6cm,故正確;

∵∠AOB=60°

∴sin∠AOB=sin60°=,

正確;

∵∠AOB=60°,

∴AB=OB,

點(diǎn)A是劣弧的中點(diǎn),

∴AC=AB

∴AB=BO=OC=CA,

四邊形ABOC是菱形,

正確.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,選擇愛國主題所對應(yīng)的圓心角是多少;

(4)如果該校九年級共有1200名學(xué)生,請估計(jì)選擇以友善為主題的九年級學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在分別標(biāo)有號碼2,3,4…109個球中,隨機(jī)取出2個球,記下它們的號碼,則較大號能被較小號整除的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PAC上,點(diǎn)QAB上,BE平分∠ABP,交ACE,CF平分∠ACQ,交ABF,BECF相交于G,CQBP相交于D,若∠BDC=140°,∠BGC=110°,則∠A的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè)

①如圖2,當(dāng)點(diǎn)在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當(dāng)點(diǎn)在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年初春,我國西北部分省區(qū)發(fā)生了雪災(zāi),造成通訊受阻.如圖,現(xiàn)有某處山坡上一座發(fā)射塔被冰雪從C處壓折,塔尖恰好落在坡面上的點(diǎn)B處,在B處測得點(diǎn)C的仰角為45°,塔基A的俯角為30°,又測得斜坡上點(diǎn)A到點(diǎn)B的坡面距離AB20米,求折斷前發(fā)射塔的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費(fèi)情況,并將結(jié)果繪制成了如圖的統(tǒng)計(jì)圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費(fèi)的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDABH,點(diǎn)G是⊙O上一點(diǎn),AGCD于點(diǎn)K,延長KD至點(diǎn)E,使KE=GE,分別延長EG、AB相交于點(diǎn)F.

(1)求證:EF是⊙O的切線;

(2)若ACEF,試探究KG、KD、GE之間的關(guān)系,并說明理由;

(3)在(2)的條件下,若sinE=,AK=2,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

同步練習(xí)冊答案