【題目】如圖,直線y=k1x+b與反比例函數(shù)y= (x>0)的圖象交于A(1,6),B(a,3)兩點.

(1)求k1和k2的值;
(2)結合圖象直接寫出k1x+b﹣ >0的x的取值范圍.

【答案】
(1)解:∵直線y=k1x+b與反比例函數(shù)y= (x>0)的圖象交于A(1,6),B(a,3)兩點,

∴k2=1×6=6,3a=6,即a=2,

∴B點坐標為(2,3),

∵一次函數(shù)y=k1x+b的圖象過A(1,6),B(2,3)兩點,

,

解得

∴k1=﹣3,k2=6;


(2)解:k1x+b﹣ >0的x的取值范圍為1<x<2
【解析】(1)利用待定系數(shù)法求出反比例函數(shù)的解析式,然后求出點B的坐標,最后用待定系數(shù)法求出直線的解析式;
(2)利用圖像直接寫不等式的解集,關鍵弄清楚誰大誰小,誰大就看誰的圖像在上方的自變量的取值范圍。
【考點精析】本題主要考查了確定一次函數(shù)的表達式的相關知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的中點,∠BDE=∠CDF,請你添加一個條件,使DE=DF成立.你添加的條件是 (不再添加輔助線和字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是等腰三角形紙片ABC外一點,∠ABC=90°,連接AE,點F是線段AE(不與點A,E重合)上一點,在△EBF中,EBFB,∠EBF=90°,連接CE,CF

(1)求證:△ABF≌△CBE

(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,點C將線段AB分成兩部分(AC>BC),如果 = ,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成面積分別為S1 , S2(S1>S2)的兩部分,如果 = ,那么稱直線l為該圖形的黃金分割線.

(1)如圖乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結論;
(2)若△ABC在(1)的條件下,如圖丙,請問直線CD是不是△ABC的黃金分割線,并證明你的結論;
(3)如圖丁,在Rt△ABC中,∠ACB=90°,D為斜邊AB上的一點,(不與A,B重合)過D作DE⊥BC于點E,連接AE,CD相交于點F,連接BF并延長,與DE,AC分別交于點G,H.請問直線BH是直角三角形ABC的黃金分割線嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

在公式(a1)2a22a1中,當a分別取1,2,34,…,n時,可得以下等式:

(11)2122×11;

(21)2222×21;

(31)2322×31;

(41)2422×41;

……

(n1)2n22n1.

將這幾個等式的左右兩邊分別相加,可以推導出求和公式:1234n.

請寫出推導過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數(shù)字0,1,2;乙袋中裝有2個完全相同的小球,分別標有數(shù)字﹣1,﹣2.現(xiàn)從甲袋中隨機抽取一個小球,將標有的數(shù)字記錄為x,再從乙袋中隨機抽取一個小球,將標有的數(shù)字記錄為y,確定點M的坐標為(x,y).
(1)用樹狀圖或列表法列舉點M所有可能的坐標;
(2)求點M(x,y)在二次函數(shù)y=x2﹣2x﹣2的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBCC,CDABD,點EAC上,EFABF,且∠1=∠2

(1)試判斷CDEF是否平行并說明理由.

(2)試判斷DGBC是否垂直并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.若AB=8,AD=6 ,AF=4 ,則AE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖為一幾何體的三視圖:主視圖和左視圖都是長方形,俯視圖是等邊三角形

1)寫出這個幾何體的名稱;

2)若主視圖的高為10cm,俯視圖中三角形的邊長為4cm,求這個幾何體的側面積.

查看答案和解析>>

同步練習冊答案