【題目】如圖,ABC的頂點A,C落在坐標(biāo)軸上,且頂點B的坐標(biāo)為(﹣5,2),將ABC沿x軸向右平移得到A1B1C1,使得點B1恰好落在函數(shù)y上,若線段AC掃過的面積為48,則點C1的坐標(biāo)為( 。

A.3,2B.5,6C.8,6D.6,6

【答案】C

【解析】

BB1的縱坐標(biāo)相同,據(jù)此把y=2代入反比例函數(shù)的解析式求得B1的坐標(biāo),則平移的距離即可求得,線段AC掃過的部分是平行四邊形,利用平行四邊形的面積公式求得C1的縱坐標(biāo),則坐標(biāo)即可求得.

B1的縱坐標(biāo)是2,把y2代入yx3,

B1的坐標(biāo)是(32),則平移的距離是3﹣(﹣5)=8(單位長度).

AA18

C1的縱坐標(biāo)是6

C1的坐標(biāo)是(8,6).

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點EF,GH分別在邊AB,BC,CDDA上,AECG,AHCF,且EG平分∠HEF

(1)求證:△AEH≌△CGF

(2)若∠EFG90°.求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m橋洞與水面

的最大距離是5m

1經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案如下圖

你選擇的方案是_____填方案一,方案二,或方案三),B點坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;

2因為上游水庫泄洪水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的外角∠EAC的平分線AD交其外接圓⊙O于點D,連接DB,DC

1)如圖1,求證BDCD;

2)如圖2,若AC是⊙O的直徑,sinBDC,求tanDBA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有,,,,等著名景點,該市旅游部門統(tǒng)計繪制出2019·長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)扇形統(tǒng)計圖中景點所對應(yīng)的圓心角的度數(shù)是______;

(2)請補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2020·節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去景點旅游?

(4)甲,乙兩個旅行團(tuán)在,,三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB = AC,點D是邊BC的中點,過點A、D分別作BC與AB的平行線,相交于點E,連結(jié)EC、AD.

求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCDAC,BD相交于點O,點EOA的中點,連接BE并延長AD于點F,已知△AEF的面積=1,則平行四邊形ABCD的面積是( 。

A.24B.18C.12D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在社會實踐課上,小聰所在小組要測量一條小河的寬度,如圖,河岸EFMN,小聰在河岸MN上的點A處測得河對岸小樹C位于東北方向,然后向東沿河岸走了30米,到達(dá)B處測得河對岸小樹D位于北偏東30°的方向,又有同學(xué)測得CD10

1)∠EAC   度,∠DBN   度;

2)求小河的寬度AE.(結(jié)果精確到0.1米,參考數(shù)據(jù):1.4141.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市第十三次黨代會提出實施東進(jìn)戰(zhàn)略,推動了城市發(fā)展格局千年之變成都龍泉山城市森林公園借東進(jìn)之風(fēng),聚全市之力,著力打造一個令世界向往的城市中心,如圖為成都市龍泉山城市豪林公園三個景點A,BC的平面示意圖,景點CB的正北方向5千米處,景點AB的東北方向,在C的北偏東75°方向上.

1)∠BAC的大小

2)求景點A,C的距離(1.414,1.732,sin75°≈0.966cos75°≈0.259,tan75°≈3.732,結(jié)果精確到0.1

查看答案和解析>>

同步練習(xí)冊答案