【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,且∠EAF=45°,將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,則下列判斷不正確的是( )
A.△AEE′是等腰直角三角形 B.AF垂直平分EE'
C.△E′EC∽△AFD D.△AE′F是等腰三角形
【答案】D.
【解析】
試題分析:因?yàn)?/span>將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,
∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正確;
∵將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,∴∠E′AD=∠BAE,
∵四邊形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,
∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正確;
∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,
∴△E′EC∽△AFD,故C正確;∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,
∴△AE′F不一定是等腰三角形,故D錯(cuò)誤;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一種商品,進(jìn)價(jià)為每個(gè)20元,規(guī)定每個(gè)商品售價(jià)不低于進(jìn)價(jià),且不高于60元,經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(個(gè))與每個(gè)商品的售價(jià)x(元)滿足一次函數(shù)關(guān)系,其部分?jǐn)?shù)據(jù)如下所示:
每個(gè)商品的售價(jià)x(元) | … | 30 | 40 | 50 | … |
每天的銷售量y(個(gè)) | 100 | 80 | 60 | … |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商場(chǎng)每天獲得的總利潤為w(元),求w與x之間的函數(shù)表達(dá)式;
(3)不考慮其他因素,當(dāng)商品的售價(jià)為多少元時(shí),商場(chǎng)每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC的內(nèi)心為I,外心為O
(1)試找出∠A與∠BOC,∠A與∠BIC的數(shù)量關(guān)系
(2)由(1)題的結(jié)論寫出∠BOC與∠BIC的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)O作OE⊥BC于E點(diǎn),連接DE交OC于F點(diǎn),作FG⊥BC于G點(diǎn),則△ABC與△FGC是位似圖形嗎?若是,請(qǐng)說出位似中心,并求出相似比;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的中線,AE=EF=FC,下面給出三個(gè)關(guān)系式:①AD=2AG;②GE:BE=1:3;③,其中正確的是( 。
A. ①② B. ①②③ C. ①③ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) C 為 Rt△ACB 與 Rt△DCE 的公共點(diǎn),∠ACB=∠DCE=90°,連 接 AD、BE,過點(diǎn) C 作 CF⊥AD 于點(diǎn) F,延長(zhǎng) FC 交 BE 于點(diǎn) G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某電視塔AB和樓CD的水平距離為100 m,從樓頂C處及樓底D處測(cè)得塔頂A的仰角分別為45°和60°,試求塔高為__________,樓高為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商貿(mào)公司購進(jìn)某種水果的成本為20元/千克,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來48天的售價(jià)p(元/千克)與時(shí)間t(天)之間的函數(shù)表達(dá)式為
p=
且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如下表:
時(shí)間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求第30天的日銷售量是多少?
(2)問:哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實(shí)際銷售的前24天中,公司決定每銷售1 kg水果就捐贈(zèng)n元利潤(n<9)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間t的增大而增大,求n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com