【題目】計(jì)算題
(1)
(2)
(3)先化簡,再求值: ,其中x=2017.
【答案】
(1)解:
(2)解:
(3)解: =
=
=
當(dāng)x=2017時(shí),原式= =
【解析】(1)先將第二個(gè)分式的分母轉(zhuǎn)化為a-b,再根據(jù)同分母分式的加減法進(jìn)行計(jì)算即可。
(2)先將兩括號里的分式分別通分計(jì)算,再算分式的乘法運(yùn)算,結(jié)果化成最簡分式即可。
(3)先將括號里的分式通分計(jì)算,再將除法轉(zhuǎn)化為乘法,約分化成最簡分式,然后代入求值即可。
【考點(diǎn)精析】掌握分式的混合運(yùn)算是解答本題的根本,需要知道運(yùn)算的順序:第一級運(yùn)算是加法和減法;第二級運(yùn)算是乘法和除法;第三級運(yùn)算是乘方.如果一個(gè)式子里含有幾級運(yùn)算,那么先做第三級運(yùn)算,再作第二級運(yùn)算,最后再做第一級運(yùn)算;如果有括號先做括號里面的運(yùn)算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時(shí),先算括號內(nèi)的運(yùn)算,從里向外{[(?)]}.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過平移得到線段A1B1,其中點(diǎn)A,B的對應(yīng)點(diǎn)分別為A1,B1,這四個(gè)點(diǎn)都在格點(diǎn)上.若線段AB上有一個(gè)點(diǎn)P(a,b),則點(diǎn)P在A1B1上的對應(yīng)點(diǎn)P'的坐標(biāo)為( )
A.(a-2,b+3)
B.(a-2,b-3)
C.(a+2,b+3)
D.(a+2,b-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在ABC中,AB=BC=5,AC=6,ABC沿BC方向平移得到△ECD,連接AE、AC和BE相交于點(diǎn)O。
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖(2),P是線段BC上一動點(diǎn),(不與點(diǎn)B、C重合),連接PO并延長交線段AB于點(diǎn)Q,QR⊥BD,垂足為點(diǎn)R.四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動而發(fā)生變化?若變化,請說明理由;若不變,求出四邊形PQED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實(shí)踐活動四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動類”課程的班級比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,點(diǎn)D是AB的中點(diǎn),分別過點(diǎn)D作DE⊥AC,DF⊥BC,垂足分別為點(diǎn)E、F.求證:四邊形CEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在一條筆直的公路上有M、P、N三個(gè)地點(diǎn),M、P兩地相距20km,甲開汽車,乙騎自行車分別從M、P兩地同時(shí)出發(fā),勻速前往N地,到達(dá)N地后停止運(yùn)動.已知乙騎自行車的速度為20km/h,甲,乙兩人之間的距離y(km)與乙行駛的時(shí)間t(h)之間的關(guān)系如圖②所示.
(1)M、N兩地之間的距離為 km;
(2)求線段BC所表示的y與t之間的函數(shù)表達(dá)式;
(3)若乙到達(dá)N地后,甲,乙立即以各自原速度返回M地,請?jiān)趫D②所給的直角坐標(biāo)系中補(bǔ)全函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中, , .將△ABC繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到△A1B1C.
(1)如圖1,當(dāng)點(diǎn)恰好在線段的延長線上時(shí),
①求證:BB1∥CA1;
②求△AB1C的面積;
(2)如圖2,點(diǎn)是上的中點(diǎn),點(diǎn)為線段上的動點(diǎn).在△ABC繞點(diǎn)順時(shí)針旋轉(zhuǎn)過程中,點(diǎn)的對應(yīng)點(diǎn)是.求線段長度的最大值與最小值的差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com