【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線經(jīng)過點(diǎn)B,且頂點(diǎn)在直線上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
【答案】(1);(2)點(diǎn)C和點(diǎn)D都在所求拋物線上.
【解析】試題分析:(1)根據(jù)拋物線經(jīng)過點(diǎn)B(0,4),且頂點(diǎn)在直線上,可求得b、c的值,即可得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;(2)根據(jù)勾股定理求得AB的長,再根據(jù)四邊形ABCD是菱形求得C、D兩點(diǎn)的坐標(biāo),分別代入解析式即可判定點(diǎn)C和點(diǎn)D是否在該拋物線上.
試題解析:
(1)∵拋物線經(jīng)過B(0,4),∴c=4
∵頂點(diǎn)在直線上,∴,
∴所求的函數(shù)關(guān)系式為:
(2)在Rt△ABO中,OA=3,OB=4,∴AB==5
∵四邊形ABCD是菱形,∴BC=CD=DA=AB=5,
∴C、D兩點(diǎn)的坐標(biāo)分別是(5,4)、(2,0),
當(dāng)x=5時(shí),
當(dāng)x=2時(shí),
∴點(diǎn)C和點(diǎn)D都在所求拋物線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-x2+(m-1)x+m與y軸交于點(diǎn)(0,3).
(1)求拋物線的解析式;
(2)求拋物線與x軸的交點(diǎn)坐標(biāo);
(3)畫出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
① 當(dāng)x取什么值時(shí),y>0 ?
② 當(dāng)x取什么值時(shí),y的值隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,則MD的長為( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB=AC,AB為⊙O的直徑,AC、BC分別交⊙O于E、D,連結(jié)ED、BE.
(1)試判斷DE與BD是否相等,并說明理由;
(2)如果BC=6,AB=5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王剛同學(xué)擬了一張招領(lǐng)啟事:“今天拾到錢包一個(gè),內(nèi)有人民幣8.5元,請(qǐng)失主到一(1)班認(rèn)領(lǐng)”.你認(rèn)為這個(gè)啟事合理嗎?如果不合理,問題在哪里?請(qǐng)你改正過來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.線段AB和線段BA表示的不是同一條線段B.x2y的系數(shù)是1,次數(shù)是2
C.多項(xiàng)式4x2y﹣2xy+1的次數(shù)是3D.射線AB和射線BA表示的是同一條射線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com