【題目】解答題唐代大詩(shī)人李白喜好飲酒作詩(shī),民間有“李白斗酒詩(shī)百篇”之說(shuō).《算法統(tǒng)宗》中記載了一個(gè)“李白沽酒”的故事.詩(shī)云:
注:古代一斗是10升.
大意是:李白在郊外春游時(shí),做出這樣一條約定:遇 見(jiàn)朋友,先到酒店里將壺里的酒增加一倍,再喝掉其中的19升酒.按照這樣的約定,在第3個(gè)店里遇到朋友正好喝光了壺中的酒.
(1)列方程求壺中原有多少升酒;
(2)設(shè)壺中原有a0升酒,在第n個(gè)店飲酒后壺中余an升酒,如第一次飲后所余酒為a1=2a0﹣19(升),第二次飲后所余酒為a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….
①用an﹣1的表達(dá)式表示an , 再用a0和n的表達(dá)式表示an;
②按照這個(gè)約定,如果在第4個(gè)店喝光了壺中酒,請(qǐng)借助①中的結(jié)論求壺中原有多少升酒.
【答案】解:(1)設(shè)壺中原有x升酒.
依題意得:2[2(2x﹣19)﹣19]﹣19=0,
去中括號(hào),得4(2x﹣19)﹣3×19=0.
去括號(hào),得:8x﹣7×19=0.
系數(shù)化1,得x=16,
答:壺中原有16升酒;
(2)①an=2an﹣1﹣19,
an=2na0﹣(2n﹣1+2n﹣2+…+1)×19,
(或an=2na0﹣(2n﹣1)×19);
②當(dāng)n=4時(shí),a4=24a0﹣(23+22+21+1)×19.
(或?qū)懗蒩4=24a0﹣(24﹣1)×19)
∵在第4個(gè)店喝光了壺中酒,
∴24a0﹣(23+22+21+1)×19=0,
(或?qū)懗?4a0﹣(24﹣1)×19=0)
即16a0﹣15×19=0.
解得:a0=17,
答:在第4個(gè)店喝光了壺中酒時(shí),壺中原有17升酒.
【解析】(1)分別表示出酒壺中剩余的酒量,利用在第3個(gè)店里遇到朋友正好喝光了壺中的酒進(jìn)而得出等式求出答案;
(2)①利用已知第一次飲后所余酒為a1=2a0﹣19(升),第二次飲后所余酒為a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),…,進(jìn)而用a0和n的表達(dá)式表示an;
②利用①中所求,進(jìn)而代入求出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在相同條件下重復(fù)試驗(yàn),若事件A發(fā)生的概率是 , 下列陳述中,正確的是( )
A.事件A發(fā)生的頻率是
B.反復(fù)大量做這種試驗(yàn),事件A只發(fā)生了7次
C.做100次這種試驗(yàn),事件A一定發(fā)生7次
D.做100次這種試驗(yàn),事件A可能發(fā)生7次
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2﹣4x+2=0的根的情況是( )
A.有兩個(gè)相等的實(shí)數(shù)根
B.有兩個(gè)不相等的實(shí)數(shù)根
C.只有一個(gè)實(shí)數(shù)根
D.沒(méi)有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】能夠刻畫一組數(shù)據(jù)離散程度的統(tǒng)計(jì)量是( )
A. 平均數(shù)
B. 眾數(shù)
C. 中位數(shù)
D. 方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;
實(shí)際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在RtABC中,∠C=90°,∠A=30°,在直線AC上找點(diǎn)P,使△ABP是等腰三角形,則∠APB的度數(shù)為_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線y=x+1和x軸上,則點(diǎn)B6的坐標(biāo)是( )
A.(63,32) B.(64,32) C.(63,31) D.(64,31)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為10和15,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q同時(shí)從原點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)0<t<5時(shí),用含t的式子表示BP,AQ
(2)當(dāng)t=2時(shí),求PQ的值;
(3)當(dāng)PQ=AB時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若﹣2xym和xny3是同類項(xiàng),則m和n的值分別為( )
A.m=1,n=1
B.m=1,n=3
C.m=3,n=1
D.m=3,n=3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com