【題目】在△ABC中,AB=12,AC=BC=10,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為E,連接BD,BE.
(1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請(qǐng)直接寫(xiě)出BE的長(zhǎng).
(2)在旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)D作DG垂直于直線(xiàn)AB,垂足為G,連接CE,當(dāng)∠DAG=∠ACB,且線(xiàn)段DG與線(xiàn)段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出BE+CE的值.
【答案】(1)①證明見(jiàn)解析;②證明見(jiàn)解析;③ BE=6-8;(2)BE+CE=26 .
【解析】
(1)①由旋轉(zhuǎn)性質(zhì)知AB=AD,∠BAD=60°即可得證;
②由BA=BD、EA=ED根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)即可得證;
③分別求出BF、EF的長(zhǎng)即可得;
(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根據(jù)三線(xiàn)合一可得CE⊥AB、AC=10、AH=6,繼而知CE=2CH=16、BE=10,即可得答案.
(1)①∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等邊三角形;
②由①得△ABD是等邊三角形,
∴AB=BD,
∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴點(diǎn)B、E在AD的線(xiàn)段垂直平分線(xiàn)上,
∴BE是AD的線(xiàn)段垂直平分線(xiàn),
∵點(diǎn)F在BE的延長(zhǎng)線(xiàn)上,
∴BF⊥AD,AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=6,
∵AE=AC=10,
∴EF=8,
∵在等邊三角形ABD中,BF=,
∴BE=BF﹣EF=;
(2)如圖所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE=CE,
∵AC=BC,
∴AH=BH=AB=6,
∴CH=
則CE=2CH=16,BE=10,
∴BE+CE=10+16=26.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為迎接體育中考,了解學(xué)生的體育情況,學(xué)校隨機(jī)調(diào)查了本校九年級(jí)50名學(xué)生“30秒跳繩”的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
根據(jù)以上圖表信息,解答下列問(wèn)題:
(1)表中的a= ,c= ;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;(畫(huà)圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù))
(3)若該校九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)“30秒跳繩”的次數(shù)60次以上(含60次)的學(xué)生有多少人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時(shí)分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時(shí)到達(dá)山頂C處,則小明的行走速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線(xiàn)BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線(xiàn)BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫(xiě)出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求作圖,不要求寫(xiě)做法,但要保留作圖痕跡.
(1)如圖1,四邊形ABCD是平行四邊形,E為BC上任意一點(diǎn),請(qǐng)只用直尺(不帶刻度)在邊AD上找點(diǎn)F,使DF=BE.
(2)如圖2,BE是菱形ABCD的邊AD上的高,請(qǐng)只用直尺(不帶刻度)作出菱形ABCD的邊AB上的高DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)C為線(xiàn)段AB上任意一點(diǎn)(不與點(diǎn)A、B重合),分別以AC、BC為一腰在AB的同側(cè)作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,連接AE交CD于點(diǎn)M,連接BD交CE于點(diǎn)N,AE與BD交于點(diǎn)P,連接CP.
(1)線(xiàn)段AE與DB的數(shù)量關(guān)系為 ;請(qǐng)直接寫(xiě)出∠APD= ;
(2)將△BCE繞點(diǎn)C旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,探究線(xiàn)段AE與DB的數(shù)量關(guān)系,并說(shuō)明理由;求出此時(shí)∠APD的度數(shù);
(3)在(2)的條件下求證:∠APC=∠BPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△中,,垂足為,點(diǎn)在上,,垂足為.
(1)與平行嗎?為什么?
(2)如果,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),菱形的對(duì)角線(xiàn)在軸上,兩點(diǎn)分別在第一象限和第四象限.直線(xiàn)的解析式為.
(1)如圖1,求點(diǎn)的坐標(biāo);
(2)如圖2,為射線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)和點(diǎn)重合),過(guò)點(diǎn)作軸交直線(xiàn)于點(diǎn).設(shè)線(xiàn)段的長(zhǎng)度為,點(diǎn)的橫坐標(biāo)為,求與的函數(shù)關(guān)系式,并直接寫(xiě)出自變量的取值范圍;
(3)如圖3,在(2)的條件下,當(dāng)點(diǎn)運(yùn)動(dòng)到線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),連接交軸于點(diǎn),連接,,延長(zhǎng)交于點(diǎn),過(guò)作交軸于點(diǎn),的角平分線(xiàn)交軸于點(diǎn),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com