已知拋物線y=ax2+bx+c(a>0)的頂點是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點,與x軸、y軸分別交于點M和N.
(1)設(shè)點P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;
(2)若線段MP與PN的長度之比為3:1,試求拋物線的函數(shù)關(guān)系式.
【答案】分析:(1)由于拋物線的頂點為C(0,1),因此拋物線的解析式中b=0,c=1.即拋物線的解析式為y=ax2+1.已知了P到x軸的距離為2,即P點的縱坐標(biāo)為2.可根據(jù)直線l的解析式求出P點的坐標(biāo),然后將P點坐標(biāo)代入拋物線的解析式中即可求得a的值,也就能求出直線l的函數(shù)關(guān)系式.
(2)本題要根據(jù)相似三角形來求.已知了線段MP與PN的長度之比為3:1,如果過P作x軸的垂線,根據(jù)平行線分線段成比例定理即可得出P點的縱坐標(biāo)的值.進而可仿照(1)的方法,先代入直線的解析式,然后再代入拋物線中即可求出a的值,也就求出了拋物線的解析式.
解答:解:(1)∵拋物線的頂點是C(0,1),
∴b=0,c=1,
∴y=ax2+1.
如圖1,∵a>0,直線l過點N(0,3),
∴M點在x軸正半軸上.
∵點P到x軸的距離為2,
即點P的縱坐標(biāo)為2.
把y=2代入y=-ax+3
得,x=,
∴P點坐標(biāo)為(,2).
∵直線與拋物線交于點P,
∴點P在y=ax2+1上,
∴2=a•(2+1,
∴a=1.
∴直線l的函數(shù)關(guān)系式為y=-x+3.

(2)如圖1,若點P在y軸的右邊,記為P1
過點P1作P1A⊥x軸于A,
∵∠P1MA=∠NMO,
∴Rt△MP1A∽Rt△MNO,

,
∴MP1=3P1N,MN=MP1+P1N=4P1N
,
,
∵ON=3,
∴P1A=
即點P1的縱坐標(biāo)為
把y=代入y=-ax+3,
得x=,
∴點P1的坐標(biāo)為(,).
又∵點P1是直線l與拋物線的交點,
∴點P1在拋物線y=ax2+1上,
=a•(2+1,
∴a=
拋物線的函數(shù)關(guān)系式為y=x2+1.
如圖2,若點P在y軸的左邊,記為P2.作P2A⊥x軸于A,
∵∠P2MA=∠NMO,
∴Rt△MP2A∽Rt△MNO,
=
,
∴MP2=3P2N,MN=MP2-P2N=2P2N,
,即=
∵ON=3,
∴P2A=,即即點P2的縱坐標(biāo)為
由P2在直線l上可求得P2(-,),
又∵P2在拋物線上,
=a•(-2+1,
∴a=
∴拋物線的函數(shù)關(guān)系式為y=x2+1.
點評:本題主要考查了一次函數(shù)與二次函數(shù)解析式的確定以及函數(shù)圖象交點等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案