【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且△ODE的面積是9,則k=( 。
A.B.9C.D.3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(2m+3)x+m2+2=0。
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為,且滿足,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線交軸的負(fù)半軸于點(diǎn),交軸的正半軸于點(diǎn),交軸于點(diǎn),且.
求的值;
如圖1,點(diǎn)在第四象限的拋物線上,橫坐標(biāo)為連接,交軸于點(diǎn),設(shè),求與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;
如圖2,在的條件下,連接,交軸于點(diǎn),點(diǎn)在線段上,射線交于點(diǎn),點(diǎn)在第二象限的拋物線上,連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,若,,求點(diǎn)和的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,解決下列問題:
(1)兩個(gè)班共有女生多少人?
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);
(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國(guó)旗隊(duì).請(qǐng)用列表法或畫樹狀圖法,求這兩人來自同一班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識(shí)競(jìng)賽“,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:
成績(jī)分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計(jì) | ■ | 1 |
(1)寫出a,b,c的值;
(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;
(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元;每減少1盆,盆景的平均每盆利潤(rùn)增加2元;②花卉的平均每盆利潤(rùn)始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.
(1)如圖1,分別求的值;
(2)如圖2,點(diǎn)為第一象限的拋物線上一點(diǎn),連接并延長(zhǎng)交拋物線于點(diǎn),,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)為第一象限的拋物線上一點(diǎn),過點(diǎn)作軸于點(diǎn),連接、,點(diǎn)為第二象限的拋物線上一點(diǎn),且點(diǎn)與點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,連接,設(shè),,點(diǎn)為線段上一點(diǎn),點(diǎn)為第三象限的拋物線上一點(diǎn),分別連接,滿足,,過點(diǎn)作的平行線,交軸于點(diǎn),求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的O恰為△ABC的外接圓,∠ABC的平分線交O于點(diǎn)D,過點(diǎn)D作DE∥AC交BC的延長(zhǎng)線于點(diǎn)E
(1)求證:DE是⊙O的切線;
(2)若AB=4,BC=2,求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com