【題目】在直角坐標平面內(nèi),點 O 為坐標原點,二次函數(shù) y=x2+(k﹣5)x﹣(k+4)的圖象交 x 軸于點 A(x1,0)、B(x2,0),且 x1>x2,x1x2+(x1+x2)+1=8.
(1)求二次函數(shù)的解析式;
(2)設(shè)函數(shù)的圖象與 y 軸的交點為點 C,求△AOC 的面積.
【答案】(1)y=x2﹣8x﹣1;(2)2+
【解析】
(1)利用根與系數(shù)的關(guān)系,把問題轉(zhuǎn)化為一元一次方程即可解決問題;
(2)求出A、C兩點坐標即可解決問題.
(1)解:依題意得:
x1×x2+( x1+x2)+1=8
二次函數(shù)圖象交 X 軸與點 A、B
所以 方程 x2+(k﹣5)x﹣(k+4)=0 的解為 x1、x2
由韋達定理得 x1×x2=﹣k﹣4,x1+x2=5﹣k,
所以﹣k﹣4+5k+1=8
解得:k=﹣3
所以 y=x2﹣8x﹣1
(2)解:依題意得點 C 的左邊為(0,﹣1),點 O 為(0,0),點 A 為(4+, 0),
則 S△AOC=2+
科目:初中數(shù)學 來源: 題型:
【題目】在一次社會調(diào)查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
請根據(jù)以上信息解答下列問題:
(1)填空:m= ______ ,n= ______ ;
(2)補全頻數(shù)發(fā)布直方圖;
(3)這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在______ 組;
(4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋著名數(shù)學家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為( 。
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】萬圣節(jié)兩周前,某商店購進1000個萬圣節(jié)面具,進價為每個6元,第一周以每個10元的價格售出200個;隨著萬圣節(jié)的臨近,預(yù)計第二周若按每個10元的價格銷售可售出400個,但商店為了盡快減少庫存,決定單價降價x元銷售根據(jù)市場調(diào)查,單價每降低1元,可多售出100個,但售價不得低于進價;節(jié)后,商店對剩余面具清倉處理,以第一周售價的四折全部售出.
當單價降低2元時,計算第二周的銷售量和售完這批面具的總利潤;
如果銷售完這批面具共獲利1300元,問第二周每個面具的銷售價格為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中建立如圖的平面直角坐標系xOy,△ABC的三個頂點都在格點上,點A的坐標是(4,4),請解答下列問題:
(1)將△ABC向下平移5單位長度,畫出平移后的并寫出點A對應(yīng)點的坐標;
(2)畫出關(guān)于y軸對稱的 并寫出的坐標;
(3)=______.(直接寫答案)
(4)在x軸上求作一點P,使PA+PB最。ú粚懽鞣,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方體的長為15厘米,寬為10厘米,高為20厘米,點B到點C的距離是5厘米。一只小蟲在長方體表面從A爬到B的最短路程是__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2 - 2(1-m)x+m2的兩實數(shù)根為x1,x2.
(1)求m的取值范圍;
(2)設(shè),當m為何值時,y有最小值,求y的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于( )
A. 3 B. C. D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com